IDI Open 2025

Presentation of solutions

March 15t 2025

The Judges and Testers

Judges
» Jean Niklas L'orange (Kodemaker)
» Tobias Meyer Andersen (SINTEF Digital)
» Dilawar Mahmood (Apple)

Test Solver
» Johan Sokrates Wind (University of Oslo)

We need more judges and testers! Send an email to
jeannikl@hypirion.com, or contact any of the judges/organizers
after the presentation.

Milk Mystery, Author: Dilawar

» Find maximum sum of K consecutive deliciousness scores
» Sliding window approach avoids recalculating sums:

» Compute initial sum of first K elements

» For subsequent windows: subtract leaving element, add new
element

» Track maximum sum encountered

» Time complexity O(N) vs brute-force O(N?)

» Handles edge cases through proper window boundary
management

Solved by 15 teams
First solution after 8 minutes

Flint Flinger, Author: Tobias

» Determine how many cities threaten each city
» Compute the length of the vectors between cities

» Avoid counting oneself!

Solved by 13 teams
First solution after 23 minutes

Ballfoot Battles, Author: Tobias

» Each time you check the score you have an equivalent problem

» Compute how many ways this last "short game" could have
been played

» Equivalent to how many distinct ways to order a set of colored
balls with a color for each team

» Divide the total number of orderings by the amount of
orderings of each color

(Z gll
> 1L ey

» Precomputing factorials can make this very quick

Solved by 2 teams
First solution after 125 minutes

Exclusive Equations, Author: Tobias

» Problem: combine subset of numbers witt XOR (&) to obtain
target number T, only 35 unique numbers

> Brute force: check all 23590 gybsets, too slow

» XOR is commutative, associative, and every number is its own
inverse

» Multiple copies of a number does not produce any more
unique results!

> Better brute force: check all 23% subsets of unique numbers

Exclusive Equations

» Problem: combine subset of numbers witt XOR (&) to obtain
target number T, only 35 unique numbers

> Brute force: check all 23590 sybsets, too slow

> XOR is commutative, associative, and every number is its own
inverse

» Multiple copies of a number does not produce any more
unique results!

> Better brute force: check all 23% subsets of unique numbers
> Still too slow

Exclusive Equations

New strategy: meet in the middle
Split the numbers in two halves
Let A and B contain the XOR of the powersets of each half

For each element a’ in A, we want to know if a b’ in B exists
suchthat a/ @b =T

T @ a = b’ by just XORing with &', so check if T®a € B

Sets have lookup time, this gives 218 operations, fast enough!

vvyyypy

vy

Solved by 2 team
First solution after 95 minutes

Crate Chucking, Author: Tobias

» This problem is a version of the internet flash game Bloxorz

BLOKORL

» Basically, move an rectangular box on a grid using valid squares
» This particular problem also introduces the concept of energy

» Also limitation on moving in the same direction twice in a row

Crate Chucking

» This can be solved with a shortest path algorithm, or a
breadth first search

» Regular graph representation with one node per cell makes
graph traversal hard to implement!

» Make one node for all three orientations the crate is in

» Produce four more nodes per cell and orientation representing
the direation it came from

» You now have 12 nodes per cell and must add the weighted
edges that are valid

» A regular Dijkstra implementation will then work!

Crate Chucking

> Instead of weighted edges, you can also add more nodes!
» If the distance is 3, add nodes between the nodes of the cells
» \We have now turned a weighted graph to an unweighted one

» A simple BFS will now work

Solved by 1 team
First solution after 237 minutes

Ant Attack, Author: Tobias

vVvyvyVvVvYyypy

Find smallest rotated rectangle containing all points
"Oriented Minimum Bounding Box" (OMBB)

Simplify problem by computing convex hull

One OMBB must have an edge along the convex hull
Computing minimum bounding box for each edge is too slow

Solution is to use the rotating calipers technique

Ant Attack

» Start by making an axis aligned bounding box

Ant Attack

» Figure out which edge will align first with the box if you
gradually rotate it

v = 11.3099324740202°
D

A

@ = 14.1481660509886°

Ant Attack

» Rotate it that minimal amount

B = 2.7263109939063°

This rotation is done in constant time

One rotation per edge in the convex hull

>

>

> Keep track of smallest area seen so far

» Linear time complexity in computing the OMBB
| 2

Given that you have computed the convex hull first, which is
NlogN

Solved by no teams

Divisor Detective, Author: Dilawar

» Sum divisor counts for all numbers 1 to N using Dirichlet’s

formula: N N
S-S

k=1 i=1
» Naive approach: Check each number’s divisors directly

» Too slow: O(Nv/N) complexity
» Even using the formula directly is O(N), still too slow

> Key insight: H’J remains constant for ranges of /

> These ranges change roughly v/N times

Divisor Detective

» Single-loop grouping:
> For each quotient g, find range [i, high] where |¥| =g
> Add g x (high— i+ 1) to result
» Jump directly to high + 1 for next range
» Careful with perfect squares to avoid off-by-one errors
» Two-phase approach (Johan's solution):
» Phase 1: Direct sum for i < +/N (small divisors)
» Phase 2: For j < /N, sum contributions from large divisors
» Avoids duplicate counting at v/N boundary

Divisor Detective

> Both methods achieve O(v/N) complexity

» Handle large inputs efficiently (N < 1010)
» Common pitfalls:

» Off-by-one errors near perfect squares
» Integer overflow in intermediate calculations
» Stopping iteration too early

Solved by 3 teams
First solution after 77 minutes

Timely Treatments

» Problem: Schedule maximum patients before their deadlines

» Greedy approach is optimal:
> Sort patients by deadline (earliest first)
> |f total time exceeds deadline, remove longest treatment
» This preserves maximum possible patients treated
» Key insight: Removing longest treatment minimizes impact on
future capacity

Timely Treatments, Author: Dilawar

> Max-heap strategy:

> Sort patients by deadline: O(N log)
» For each patient:

> Add treatment time to heap: O(log N)
> If total exceeds deadline, remove max: O(log V)

» Simple to implement, efficient in practice
» Total complexity: O(N log N)

Timely Treatments

» Segment tree approach:
» Build tree to track available time slots
» Binary search for latest feasible treatment window
» Maintain cumulative treatment times in nodes
» Useful for variant problems with:

»> Range updates
» Dynamic scheduling changes
» Multiple resource constraints

Solved by 3 teams
First solution after 121 minutes

Incinerating Incantations, Author: Jean Niklas

» Simulation problem: Follow the rules in correct order
» Few enough spells that you can try all O(n!) combinations

» permutations from the itertools package makes this easy
» Ensure mana and fire power don't go below 0

» NB: Zeroing must be done after every step, and cannot be
applied “in bulk”

Solved by 2 teams
First solution after 214 minutes

Hopping Haven, Author: Jean Niklas

» Problem: Find all sequence of moves a rectangle on a grid can
do to avoid the most moving squares

» DP problem with a lot of details

» First make a graph G = (V, E) for all valid kingdom locations
and edges between them

» Then make a hash map DP : (V,S) — (hits, n) where S
represents the set of active squares, and n represents the
number of states that reaches the state (v, s, hits)

> Initial state is DP® = {(vjnir, {}) : (0,1)}
» Also keep track of all active squares (A)

Hopping Haven

For even seconds i
> First add new active squares appearing to A
> Make a new empty map DP*1 = {}
> Then, for all (v,s) — (hits, n) in DP':
» For all neighbours v; of v:
> Let sj = s U {squares intersecting v;}
> If DP"*[(v;, s;)].hits = hits, add n to it
> If DP™™[(v;, 5;)].hits > hits or does not exist, replace it with
(hits, n)
» (In English: For every (v,s), keep track of all move strategies
that has the lowest number of hits)

Hopping Haven

For odd seconds i:
» Move all active squares A by their delta
> Remove squares that are outside the grid from A, if any
> Make a new empty map DP*1 = {}
> For all (v,s) — (hits, n) in DP':
> Let s; = (s U {squares intersecting v}) N A

(Important to remove the vanished squares)
» Insert into DP'*! according to the rules of last slide

Hopping Haven

» When last active square is gone from the map, first find
minimal hits in the DP table, then sum up all states that has
that many number of hits.

» Running time with nested maps is O(V argmax|S| Tmax)

P Since there are at most 6 active squares, the number of
permutations of S is limited to approximately
max{('g) :0 < N <6} =20, which is manageable

» Approximates the running time to O(VT pax) =
O(WH(200 + max(W, H))) = O(WH max(W, H))

(with a somewhat high constant factor)

Solved by no teams

