
IDI Open 2025

Presentation of solutions

March 1st 2025

The Judges and Testers

Judges

▶ Jean Niklas L'orange (Kodemaker)

▶ Tobias Meyer Andersen (SINTEF Digital)

▶ Dilawar Mahmood (Apple)

Test Solver

▶ Johan Sokrates Wind (University of Oslo)

We need more judges and testers! Send an email to
jeannikl@hypirion.com, or contact any of the judges/organizers
after the presentation.

Milk Mystery, Author: Dilawar

▶ Find maximum sum of K consecutive deliciousness scores

▶ Sliding window approach avoids recalculating sums:
▶ Compute initial sum of �rst K elements
▶ For subsequent windows: subtract leaving element, add new

element
▶ Track maximum sum encountered

▶ Time complexity O(N) vs brute-force O(N2)

▶ Handles edge cases through proper window boundary
management

Solved by 15 teams
First solution after 8 minutes

Flint Flinger, Author: Tobias

▶ Determine how many cities threaten each city

▶ Compute the length of the vectors between cities

▶ Avoid counting oneself!

Solved by 13 teams
First solution after 23 minutes

Ballfoot Battles, Author: Tobias

▶ Each time you check the score you have an equivalent problem

▶ Compute how many ways this last "short game" could have
been played

▶ Equivalent to how many distinct ways to order a set of colored
balls with a color for each team

▶ Divide the total number of orderings by the amount of
orderings of each color

▶
∏

i

(
∑

j gi,j)!∑
j (gi,j)!

▶ Precomputing factorials can make this very quick

Solved by 2 teams
First solution after 125 minutes

Exclusive Equations, Author: Tobias

▶ Problem: combine subset of numbers witt XOR (⊕) to obtain
target number T, only 35 unique numbers

▶ Brute force: check all 23500 subsets, too slow

▶ XOR is commutative, associative, and every number is its own
inverse

▶ Multiple copies of a number does not produce any more
unique results!

▶ Better brute force: check all 235 subsets of unique numbers

Exclusive Equations

▶ Problem: combine subset of numbers witt XOR (⊕) to obtain
target number T, only 35 unique numbers

▶ Brute force: check all 23500 subsets, too slow

▶ XOR is commutative, associative, and every number is its own
inverse

▶ Multiple copies of a number does not produce any more
unique results!

▶ Better brute force: check all 235 subsets of unique numbers

▶ Still too slow

Exclusive Equations

▶ New strategy: meet in the middle

▶ Split the numbers in two halves

▶ Let A and B contain the XOR of the powersets of each half

▶ For each element a′ in A, we want to know if a b′ in B exists
such that a′ ⊕ b′ = T

▶ T ⊕ a′ = b′ by just XORing with a′, so check if T ⊕ a′ ∈ B

▶ Sets have lookup time, this gives 218 operations, fast enough!

Solved by 2 team
First solution after 95 minutes

Crate Chucking, Author: Tobias

▶ This problem is a version of the internet �ash game Bloxorz

▶ Basically, move an rectangular box on a grid using valid squares

▶ This particular problem also introduces the concept of energy

▶ Also limitation on moving in the same direction twice in a row

Crate Chucking

▶ This can be solved with a shortest path algorithm, or a
breadth �rst search

▶ Regular graph representation with one node per cell makes
graph traversal hard to implement!

▶ Make one node for all three orientations the crate is in

▶ Produce four more nodes per cell and orientation representing
the direation it came from

▶ You now have 12 nodes per cell and must add the weighted
edges that are valid

▶ A regular Dijkstra implementation will then work!

Crate Chucking

▶ Instead of weighted edges, you can also add more nodes!

▶ If the distance is 3, add nodes between the nodes of the cells

▶ We have now turned a weighted graph to an unweighted one

▶ A simple BFS will now work

Solved by 1 team
First solution after 237 minutes

Ant Attack, Author: Tobias

▶ Find smallest rotated rectangle containing all points

▶ "Oriented Minimum Bounding Box" (OMBB)

▶ Simplify problem by computing convex hull

▶ One OMBB must have an edge along the convex hull

▶ Computing minimum bounding box for each edge is too slow

▶ Solution is to use the rotating calipers technique

Ant Attack

▶ Start by making an axis aligned bounding box

Ant Attack

▶ Figure out which edge will align �rst with the box if you
gradually rotate it

Ant Attack

▶ Rotate it that minimal amount

▶ This rotation is done in constant time

▶ One rotation per edge in the convex hull

▶ Keep track of smallest area seen so far

▶ Linear time complexity in computing the OMBB

▶ Given that you have computed the convex hull �rst, which is
NlogN

Solved by no teams

Divisor Detective, Author: Dilawar

▶ Sum divisor counts for all numbers 1 to N using Dirichlet's
formula:

N∑
k=1

d(k) =
N∑
i=1

⌊
N

i

⌋
▶ Naive approach: Check each number's divisors directly

▶ Too slow: O(N
√
N) complexity

▶ Even using the formula directly is O(N), still too slow

▶ Key insight:
⌊
N
i

⌋
remains constant for ranges of i

▶ These ranges change roughly
√
N times

Divisor Detective

▶ Single-loop grouping:
▶ For each quotient q, �nd range [i , high] where

⌊
N
i

⌋
= q

▶ Add q × (high − i + 1) to result
▶ Jump directly to high + 1 for next range
▶ Careful with perfect squares to avoid o�-by-one errors

▶ Two-phase approach (Johan's solution):
▶ Phase 1: Direct sum for i ≤

√
N (small divisors)

▶ Phase 2: For j ≤
√
N, sum contributions from large divisors

▶ Avoids duplicate counting at
√
N boundary

Divisor Detective

▶ Both methods achieve O(
√
N) complexity

▶ Handle large inputs e�ciently (N ≤ 1010)

▶ Common pitfalls:
▶ O�-by-one errors near perfect squares
▶ Integer over�ow in intermediate calculations
▶ Stopping iteration too early

Solved by 3 teams
First solution after 77 minutes

Timely Treatments

▶ Problem: Schedule maximum patients before their deadlines

▶ Greedy approach is optimal:
▶ Sort patients by deadline (earliest �rst)
▶ If total time exceeds deadline, remove longest treatment
▶ This preserves maximum possible patients treated

▶ Key insight: Removing longest treatment minimizes impact on
future capacity

Timely Treatments, Author: Dilawar

▶ Max-heap strategy:
▶ Sort patients by deadline: O(N logN)
▶ For each patient:

▶ Add treatment time to heap: O(logN)
▶ If total exceeds deadline, remove max: O(logN)

▶ Simple to implement, e�cient in practice

▶ Total complexity: O(N logN)

Timely Treatments

▶ Segment tree approach:
▶ Build tree to track available time slots
▶ Binary search for latest feasible treatment window
▶ Maintain cumulative treatment times in nodes
▶ Useful for variant problems with:

▶ Range updates
▶ Dynamic scheduling changes
▶ Multiple resource constraints

Solved by 3 teams
First solution after 121 minutes

Incinerating Incantations, Author: Jean Niklas

▶ Simulation problem: Follow the rules in correct order

▶ Few enough spells that you can try all O(n!) combinations
▶ permutations from the itertools package makes this easy

▶ Ensure mana and �re power don't go below 0
▶ NB: Zeroing must be done after every step, and cannot be

applied �in bulk�

Solved by 2 teams
First solution after 214 minutes

Hopping Haven, Author: Jean Niklas

▶ Problem: Find all sequence of moves a rectangle on a grid can
do to avoid the most moving squares

▶ DP problem with a lot of details

▶ First make a graph G = (V ,E) for all valid kingdom locations
and edges between them

▶ Then make a hash map DP : (V , S) → (hits, n) where S
represents the set of active squares, and n represents the
number of states that reaches the state (v , s, hits)

▶ Initial state is DP0 = {(vinit , {}) : (0, 1)}
▶ Also keep track of all active squares (A)

Hopping Haven

For even seconds i :

▶ First add new active squares appearing to A

▶ Make a new empty map DP i+1 = {}
▶ Then, for all (v , s) → (hits, n) in DP i :

▶ For all neighbours vj of v :
▶ Let sj = s ∪ {squares intersecting vj}
▶ If DP i+1[(vj , sj)].hits = hits, add n to it
▶ If DP i+1[(vj , sj)].hits > hits or does not exist, replace it with

(hits, n)
▶ (In English: For every (v , s), keep track of all move strategies

that has the lowest number of hits)

Hopping Haven

For odd seconds i :

▶ Move all active squares A by their delta

▶ Remove squares that are outside the grid from A, if any

▶ Make a new empty map DP i+1 = {}
▶ For all (v , s) → (hits, n) in DP i :

▶ Let sj = (s ∪ {squares intersecting v}) ∩ A

(Important to remove the vanished squares)
▶ Insert into DP i+1 according to the rules of last slide

Hopping Haven

▶ When last active square is gone from the map, �rst �nd
minimal hits in the DP table, then sum up all states that has
that many number of hits.

▶ Running time with nested maps is O(V argmax|S |Tmax)

▶ Since there are at most 6 active squares, the number of
permutations of S is limited to approximately
max{

(
N
6

)
: 0 < N ≤ 6} = 20, which is manageable

▶ Approximates the running time to O(VTmax) =
O(WH(200+max(W ,H))) = O(WH max(W ,H))
(with a somewhat high constant factor)

Solved by no teams

