

IDI Open 2024

Presentation of solutions

March 16th 2024

The Judges and Testers

Judges

- ▶ Jean Niklas L'orange (Kodemaker)
- ▶ Tobias Meyer Andersen (SINTEF Digital)

Test Solver

- ▶ Johan Sokrates Wind (University of Oslo)

We need more judges and testers! Send an email to jeannikl@hypirion.com, or contact any of the judges/organizers after the presentation.

Deceitful Dice

- ▶ Sort the dice in descending order of expected value
- ▶ Make sure the sorting is stable!
- ▶ Either sort pairs, or use explicitly stable sorting algorithm

Solved by XXXX teams

First solution after 2 minutes

Exponential Eggs

- ▶ Implement the formula, e.g.
- ▶ NB: Since output is asked as integer, print the entire number as an integer

Solved by XXXX teams

First solution after 5 minutes

Friend Finding

- ▶ You must figure out how quickly they can meet when placed at different nodes in the graph
- ▶ You do not need to consider arbitrary triples of nodes, because nodes on the same path must be strictly better
- ▶ You do not need to consider paths of length greater than 3, because placing them just next to each other and meeting in the middle is strictly better
- ▶ Answer is the length of the second shortest edge of any node

Solved by XXXXX teams

First solution after 28 minutes

Puzzling Poison Protection

- ▶ All items are initially marked as unknown (?)
- ▶ First, mark all items in a record that doesn't protect against poison as n
- ▶ Then, go through all records that protect against poison:
 - ▶ If there's only one item that isn't marked with n, mark that item as y

Solved by XXXX teams

First solution after 45 minutes

Möbius Music

- ▶ Given a sequence, and a rotation of it, find out how much it was rotated by
- ▶ This can be phrased as matching pattern in a text if you consider the text (our music piece) to be a cyclical string!
- ▶ If remembering or implementing KMP on the spot is hard, use a rolling polynomial hash to do it probabilistically.

Solved by XXXX teams

First solution after 14 minutes

Climbing Capacity

- ▶ Agnar minimizes T , the level of tiredness on the most tiresome day, while finishing the hike within M days or less
- ▶ Observation I) Evaluating $\text{IsPossible}(T)$ for all possible values gives a sorted array
- ▶ Observation II) Given a maximum level of tiredness we can greedily evaluate if it is possible in linear time
- ▶ This means we can binary search over T
- ▶ To make it fast enough avoid multiplication of large numbers using the logarithm rule $\log(A * B) = \log(A) + \log(B)$

Solved by XXXXX teams

First solution after 28 minutes

Terminal Tools

- ▶ Bipartite matching problem between features and characters
- ▶ Solved by computing the maximum flow of the graph connecting a source to each feature and every character to a sink.
- ▶ Nice restrictions should make it solvable with any maximum flow algorithm of your liking

Solved by XXXX teams

First solution after 33 minutes

Restaurant Rinser

- ▶ Use dynamic programming to find the total amount of possible paths ending at a certain location of every possible length t

$$dp(t, x, y) = \sum dp(t - 1, \text{neighbors})$$

- ▶ Redo it without counting paths go to or from the dirty table, we now have number of paths with dirty table
- ▶ Subtracting number of paths with the table dirty from the number of possible paths leaves us with number of paths cleaning the table
- ▶ Computing multiplicative inverse mod prime is done using Fermat's little theorem adjusted slightly

$$n^{p-1} \equiv 1 \pmod{p} \rightarrow n^{n-2} \equiv n^{-1} \pmod{p}$$

- ▶ The fraction is then just a regular multiplication

Solved by XXXXX teams

First solution after 61 minutes

Sausage Slicing

- ▶ Divide a string of sausages fairly, everyone must get a fair share from their perspective of evaluations
- ▶ Dynamic programming to figure out how many people of type A and B can be satisfied by the first i sausages.
- ▶ $dp(i, a, b) = \text{true iff } a \text{ people of type A and } b \text{ people of type B can receive a fair share using only the first } i \text{ sausages}$
- ▶ if a range of sausages from $i + 1$ to j is considered a fair portion by a person from group A:

$$dp(j, a, b) = dp(i, a - 1, b)$$

- ▶ precompute prefix sums to check this faster

Sausage Slicing

- ▶ This is the intended solution, limits based on $\mathcal{O}(N^2 \cdot A \cdot B + N)$
- ▶ Johan found valid solution in $\mathcal{O}(A \cdot B + N)$, so limits on N , A , and B could have been pushed much higher...

Solved by XXXX teams

First solution after 68 minutes