Solutions — IDI Open 2022

March 19th 2022

The Judges

(In alphabetical order)
» Jean Niklas L'orange
> Nils Barlaug
» Sander Land

Want to join us? Send an email to jeannikl@hypirion.com or
contact me or the organizers after the presentation!

Game Party

» Sum up all the people in the arriving groups, then add one
(yourself)

» Take modulo 3 to find the remaining people:

Solved by 31 teams
First solution after 1 minute

Another Ancient Cipher

» You're given a variant of the Vigenére cipher, and need to
decrypt an encrypted message. Recall that the formula is

(Mi + Ki) mod 26 if M; is even

Epvg(Mi, Ki) =
Aug) {(Mi — K;) mod 26 if M; is odd

> If , then we can compute all possibilities and store all
combinations in a dictionary:

Another Ancient Cipher

» You can then use dec to decode the message:

Another Ancient Cipher

» But you can also deduce that M; £ K; = C; (mod 2): If the
parity of M; and K; are the same, then C; will be even. That
gives us

(Ci — Ki) mod 26 if GG=M; (mod 2)

Daug(GCi, Ki) =
g (Cir Ki) {(C,-+K,-) mod 26 if G £ M; (mod 2)

Solved by 26 teams
First solution after 10 minutes

Kattis Completionist

» Sort all numbers in ascending order, then group them so that
all groups have at least G points each. The number of groups
is the answer

» Complicated by the fact that,
1.3 + 2.3 = 3.5999999999999996 with floating point numbers

» Solution: Either convert the numbers to ints by removing the
decimal point, or use an epsilon comparison instead of exact
comparison

Solved by 23 teams
First solution after 5 minutes

Changing Complexity

» Given a DAG with V nodes, find a topological sorting that
alternates between the most and least complex task available
at the moment

» Find all tasks with no dependencies, and grow that set as you
complete tasks

> \We need a data structure that supports efficient insertion and
removal of smallest and biggest element: Any kind of balanced
search tree should do the job.

Changing Complexity

» You can use Set in C++ or TreeSet in Java

» No alternative for Python in the standard library, but it's
possible to use a set (to track which you've visited), a max
heap and a min heap to do the same thing.

» Total worst case running time is O(V log V)

Solved by 9 teams
First solution after 29 minutes

Healthy Headgear

> If you know the number of machines, you can compute the
total time T with a priority queue.

» And the time taken will be monotonically non-increasing with
the number of machines.

» Use binary search to find the lowest amount of machines that
runs within the time limit.

> NB: It's possible to receive in 0 requests, in which case the
answer is 0.

Solved by 7 teams
First solution after 18 minutes

Frugal Ferry Fees

» Shortest path with a lot of queries and over a big graph

» Dijkstra too slow (too many queries) and Floyd-Warshall too
slow (too big graph)

» Key insight: All nodes reachable from one another with zero
cost can be considered one clique.

» lIdea: Solve it by computing a mapping from node to clique,
then computing Floyd-Warshall on the cliques

Frugal Ferry Fees

Frugal Ferry Fees

» The number of cliques can be at most F + 1: A ferry can (but
doesn’t have to) split two groups of nodes into different cliques
» Floyd-Warshall on F < 300 is fast enough, giving us
O(V + F3 + Q): The time to find the cliques, Floyd-Warshall
on the cliques, then computing the requested paths

Solved by 7 teams
First solution after 40 minutes

Delicious Diet for Ducks

» Dynamic programming

» Multiple ways to run the DP, but only some will work in
Python. Here's one:

> If you sort all the shop’s duck treats in reverse, the index will

represent the number of treats left to evaluate (plus one). For
one such state, we can store the probabilities of each different

shop.
» We can use remaining treats left as a triple tuple representing
the state

Delicious Diet for Ducks

» Define the base case as a shop with zero treats left for one
shop. Those give a 100% chance of using that shop.

» Run the DP by number of treats left in total: (1, 1, 1) is the
lowest non-base case, which has 3 treats left

» Then do all valid permutations with 4 treats left ((2, 1, 1), (1,
2,1), (1, 1, 2)) etc.

Delicious Diet for Ducks

presoimgs/ddd-3.pdf

Delicious Diet for Ducks

presoimgs/ddd-4.pdf

Delicious Diet for Ducks

presoimgs/ddd-5.pdf

Delicious Diet for Ducks

presoimgs/ddd-6.pdf

Delicious Diet for Ducks

presoimgs/ddd-7.pdf

Delicious Diet for Ducks

presoimgs/ddd-8.pdf

Delicious Diet for Ducks

presoimgs/ddd-9.pdf

Delicious Diet for Ducks

» Finding all the different permutations efficiently is the hard
part (here C/Java makes it easier than Python)

Solved by 7 teams
First solution after 97 minutes

BBBBBB

» Shortest path with a compound key (number of gravity flips
and number of actions taken)

» Dijkstra is sufficient, but a node can be visited twice: One for
each gravity direction.

> A lot of different edge cases: Read the pseudocode carefully

BBBBBB

4 4
#i##
#O #
X#
#o#4

Here the player immediately dies.

BBBBBB

4 4
#i##
#O #
#X #
#o#4

Here the player immediately wins.

BBBBBB

4 4
#i##
#O #
X#
##tvH

Here the player wins in one step: Move right.

BBBBBB

45
#it##
#o #
X#
#
#it##

Here the player wins in two steps: Move right and gravity flip.

BBBBBB

Solved by 6 teams
First solution after 86 minutes

Eyeballing Extraterrestials

v

Given two ranges, add M; to each element in the range which
has the least value on average. Well, except for one element,
but we can programmatically remove that after we've fetched
the range.

Then perform @ range queries
Needs fast range insert and fast range update

A Fenwick tree performs fast range inserts (O(log n)), but can
only do efficient point updates (O(log n))

One solution: Double Fenwick. Strap on to your seat belts

Eyeballing Extraterrestials

Let treel and tree2 be two Fenwick trees of size N. Then define
range_add and range_sum as
(Where tree_add and tree_sum are Fenwick tree adds and sums)

» Why does this work? Maths.

> It's a well known trick explained on multiple different
webpages, and they do a better job than | would during in this
presentation. One such website would be https:
//cp-algorithms.com/data_structures/fenwick.html

> A segment tree will also do the job here, perhaps more
intuitively

Solved by 4 teams
First solution after 94 minutes

https://cp-algorithms.com/data_structures/fenwick.html
https://cp-algorithms.com/data_structures/fenwick.html

Laser-Linked Lighthouses

» Connect all towers to each other by line of sight

» Minimal spanning tree, where the minimal height is the
“distance”/“cost” between two towers

» . ..but what is the minimal height of two connected towers?

Laser-Linked Lighthouses

presoimgs/111-1.pdf

Laser-Linked Lighthouses

We use the haversine formula to find the smallest 6 on a sphere

between two points!:

From here on, we can work on the data as a 2D problem.
Note: Must convert input from degrees to radians first.

it's also possible to use 3D Euclidean geometry to find 6.

Laser-Linked Lighthouses

presoimgs/111-2.pdf

Laser-Linked Lighthouses

We can use the law of sines to get r + h:

r
r+h= ——
cos(0/2)
Since we want input in multiples of radiuses of Europa, we set
r = 1 for convenience, and solve for that:

L+h= cos(0/2)

he 1
~ cos(0/2)

» Height can then be computed as follows:

» Then use a minimal spanning tree algorithm and pick the
maximum height seen.

This problem had an error in the judge answer, causing it pick the
last height instead of the maximum height. Therefore, it was solved
by 0 teams during the competition. After the contest was over,
rechecks found that TBA teams had one (or more) correct
submission[s], the first submitted after TBA minutes.

Do note that several of the teams that got “wrong answer” got it
changed into a “run time error” or a “time limit exceeded”. This
could have given them information which would have made them
eventually able to solve the problem during the competition.

