

Solutions – IDI Open 2017

April 22nd 2017

- ▶ $((B_r - B) * B_s) / (A_s + 1 + A)$

Solved by 50 teams

First solution after 6 minutes

Square Peg In A Round Hole, Author: Torbjørn Morland

- ▶ A square can be treated as a circle with radius $\frac{s_i}{\sqrt{2}}$
- ▶ Make a sorted list of circular houses and (converted) square houses
- ▶ Greedily fill the plots, starting with the smallest plot

Solved by 38 teams

First solution after 21 minutes

- ▶ From each toll booth, do as many 1 km trips as we can, picking up K apples and dropping off $K - 1$ apples right before the next one
- ▶ Keep doing this until you run out of apples

Solved by 32 teams

First solution after 22 minutes

- ▶ This task is about finding the shortest path from A to B
- ▶ Different rules apply to Elsa and the father
- ▶ Can be solved using BFS or Dijkstra

Solved by 10 teams

First solution after 63 minutes

What's In It For Me, Author: Karl Johan Sande Heimark

- ▶ Establish trivial bounds for ingredients based on stated limits
- ▶ An item cannot have a higher max than the one before or lower minimum than the one after
- ▶ For each ingredient, try all percentages in this interval
- ▶ Make new bounds on other ingredients based on this, and check if it is possible to reach 100 with that solution

Solved by 8 teams

First solution after 91 minutes

- ▶ Also known as the Josephus problem
- ▶ Can be solved with the following recurrence (DP)
- ▶ $f(T, K) = (f(T - 1, K) + K) \bmod T$
- ▶ $f(1, K) = 0$

Solved by 5 teams

First solution after 132 minutes

- ▶ This problem had the lowest accuracy (5/61)
- ▶ Naive implementations time out
- ▶ Problem originally had $T \leq 10\,000\,000\,000$
- ▶ Solution to this left as an exercise to the reader

Solved by 5 teams

First solution after 132 minutes

Travelling Delivery Person, Author: Torbjørn Morland

- ▶ Truck direction will impact cost to next delivery
- ▶ Therefore run Floyd-Warshall over all locations *and* directions
- ▶

$$dp(l_i, dir) = \min_{d_j=dirs} (dp(l_{i-1}, d_j) + minPath(\{l_{i-1}, d_j\}, \{l_{i-1}, dir\}))$$

Solved by 3 teams

First solution after 270 minutes

- ▶ Make a convex hull over the trees (f.ex. via Jarvis March) to find total length of fence
- ▶ Then use DP similar to Knapsack 0-1 to find the optimal tree choice.

Solved by 3 teams

First solution after 198 minutes

Poetry Tower, Author: Torbjørn Morland

- ▶ If a set of n words work, all permutations will work (just change order of the blocks). There are $n!$ different permutations.
- ▶ Since $M \leq 8$, can try all possible set of words (at most 2^8)
- ▶ Check if we can make a poem with the words through bipartite matching:
 - ▶ Make a vertex for all blocks and all letters in the words
 - ▶ Make an edge between a block vertex and a letter vertex iff we can use the block to show the letter

Solved by 2 teams

First solution after 156 minutes

Johnny5 And The Exploding Oil Cans, Author: Torbjørn Morland

- ▶ Each oil can represents five events; a point scored where it is, and oil spill in the neighboring cells
- ▶ Find score with DP, where state is (last can you picked up, amount of energy you have)
- ▶ Make a list of events sorted by time, including starting position with starting energy
- ▶ For each event, and amount of energy you can have:
- ▶ Iterate over all events after that one, and update dp for that state if you can reach it

Solved by 1 team

First solution after 291 minutes