

Solutions – IDI Open 2016

April 16th 2016

Pizza Crust, Author: Torbjørn Morland

- ▶ $100 \cdot \frac{(R-C)^2}{R^2}$

Solved by 72 teams

First solution after 5 minutes

Time Travelling Temperatures, Author: Torbjørn Morland

- ▶ This task is about finding where two lines cross
- ▶ A is $y = x$
- ▶ B is $y = Yx + X$
- ▶ If Y equals 1, it is either impossible or all good
- ▶ Otherwise: $-\frac{X}{Y-1}$

Solved by 63 teams

First solution after 5 minutes

- ▶ Trie data structure
- ▶ $\text{len}(w)$ lookup, insertion
- ▶ Example input on blackboard
- ▶ Or you could just use a map

Solved by 48 teams

First solution after 22 minutes

Palindrome Names, Author: Torbjørn Morland

- ▶ Solution without being allowed to add to the end:
- ▶ Count the number of positions where `name[i] != name[-i - 1]`
- ▶ Make sure you stop at the right place
- ▶ Solution to problem:
`min([i + palindromeCost(name[i:]) for i in range(len(name))])`

Solved by 40 teams

First solution after 13 minutes

- ▶ BFS: try adding a digit to all $n - 1$ digit lucky numbers
- ▶ Turns out no lucky number is longer than 25 digits
- ▶ Could precompute all answers

Solved by 28 teams

First solution after 25 minutes

What Does It Mean, Author: Karl Johan Sande Heimark

- ▶ Dynamic programming
- ▶ Iterate i from 0 to the length of the name
- ▶ For all words w with k meanings that end at position i in the string:
 - ▶ $dp[i] += dp[i - \text{len}(w)] * k$
 - ▶ Watch out for integer overflow, use modular arithmetics

Solved by 25 teams

First solution after 31 minutes

Get Off My Lawn, Author: Karl Johan Sande Heimark

- ▶ Let's say you want to see if R is long enough for a chain
- ▶ Check how far away wall is. If $< R$, $\pi \cdot R^2$
- ▶ Otherwise it gets complicated :(
- ▶ Find size of circle sector that intersects with wall
- ▶ Find out how much of that sector is on the other side of the wall
- ▶ Subtract that area
- ▶ Profit

Solved by 18 teams

First solution after 53 minutes

Get Off My Lawn, continued

- ▶ See blackboard along with this
- ▶ distance to line: $d = \frac{abs(x_2y_1 - y_2x_1)}{\sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}}$
- ▶ $\alpha = 2 \cdot \cos^{-1}\left(\frac{d}{R}\right)$
- ▶ $sector = \frac{\alpha \cdot \pi \cdot R^2}{2\pi} = \frac{\alpha \cdot R^2}{2}$
- ▶ $sectorOnOtherSide = sector - \frac{2 \cdot \sqrt{R^2 - d^2} \cdot d}{2}$
- ▶ $area = \pi \cdot R^2 - \left(\frac{\alpha \cdot R^2}{2} - \sqrt{R^2 - d^2} \cdot d\right)$

Get Off My Lawn, continued

- ▶ How to find R?
- ▶ Binary search will do it
- ▶ Limits so small that you can do linear search

Memory Game, Author: Torbjørn Morland

- ▶ Dynamic programming
- ▶ State: How many cards are left, how many of them do we know
- ▶ Let's say we have N cards left, of which we know K
- ▶ Let's call the number of unknown cards left n . $n = N - K$.
These are the cards you will be drawing from.
- ▶ Let's call the the number of unknown cards that do not have a match in the known cards m . $m = n - K$.

Solved by 12 teams

First solution after 61 minutes

Memory Game, continued

- ▶ p1: Probability of drawing two matching unknown cards:
$$\frac{m}{n} \cdot \frac{1}{n-1}$$
- ▶ p2: Probability of drawing two different unknown cards:
$$\frac{m}{n} \cdot \frac{m-2}{n-1}$$
- ▶ p3: Probability of drawing a card we have seen before: $\frac{K}{n}$
- ▶ p4: Probability of drawing first an unknown, then a known:
$$\frac{m}{n} \cdot \frac{K}{n-1}$$

Memory Game, continued

- ▶ This gives the following value for $dp[N][K]$
- ▶
$$p1 * (1 + dp[N - 2][K]) + p2 * (1 + dp[N][K + 2]) + p3 * (1 + dp[N - 2][K - 1]) + p4 * (2 + dp[N - 2][K])$$
- ▶ This can be simplified a bit, but shows what the approach looks like

Building Fences, Author: Torbjørn Morland

- ▶ Let's say you want to see if you can make the fence L meters tall
- ▶ Try to make as many posts of lenght L as you can from each pole
- ▶ If you get more than N , you are good
- ▶ Binary search for L
- ▶ Make sure you handle it properly if the pole divides evenly into L length posts

Solved by 9 teams

First solution after 93 minutes