
IDI Open
Programming Contest

April 21th, 2012

Solution sketches

A Boss Rush

B Decode the Message (Easy)

C Troublesome Tools

D Civilization (Easy)

E Inverse Divisor Sums

F Longest Common Path

G Birthday Party

H Holey Road

I Candy Store

J Rotating Penguin Maze



Problem A

Boss Rush

Problem author: Ruben Spaans

The main observation is that the three weapon categories
are independent of each other. We can then do bipartite
matching for each category separately. Create a graph with
the bosses on the left side and the weapons on the other
side, two of each. There is an edge between a boss and a
weapon (both copies) if the weapon can be used to defeat
the boss. Then, for each boss (starting with the first one),
try to find an augmenting path to an unused weapon. Abort
when either all bosses are matched, or a boss is encountered
for which no augmenting path exists. Do this for all three weapon categories. The answer
is the minimum of the results from the three weapon categories.

It is also possible to use a regular max flow algorithm. Create a graph as described
above, and add a source with edges to each boss, and add a sink with edges from each
weapon. Here, only one of each weapon is needed. Each edge has a capacity of 1, except
from the edges from the weapons to the sink, which should have capacity 2. Add edges
from the source to bosses in increasing order, and find an augmenting path for each edge
added. Abort when no augmenting path can be found.

A map from string to integer can be used for converting the strings in the input into
node identifiers.

2



Problem B

Decode the Message (Easy)

Problem author: Geir-Arne Fuglstad

This problem can be solved by reading in the string and
then following the instructions given. Initialize a variable
with value equal to 0, then use this variable to keep track
of the value of the current word. Each time a lower-case
character is encounter its value is added to the variable,
and each time a space is encountered calculate the value
modulo 27, output the corresponding character and set the
variable to zero. Finally, there is no space in the end of
the string so the character corresponding to the last word
is outputed after iterating through the string.

3



Problem C

Troublesome Tools

Problem author: Jon Marius Venstad

The tools will always be divided into disjoint subsets,
where the tools in each subset cannot be discriminated by
current knowledge:

1. Initially all tools are in the same subset.

2. A subset of tools j that are picked from a subset i will
form a new one, and i will be replaced by i \ j.

3. The picking in (2) can be done in
(
ni

ki

)
ways for

each subset i, for a total of Πi

(
ni

ki

)
These may be

large numbers, so Pascal’s Triangle modulo 231 − 1
is advisable. (Alternatively division modulo 231 − 1
works fine, since this is a prime group.)

4. Add the results from (3), modulo 231 − 1.

For a fast representation of the subsets, let each tool keep track of which subset it belongs
to, and let each subset only keep track of the split-off subset for each step (2), and its
size.

4



Problem D

Civilization (Easy)

Problem author: Ruben Spaans

The maximal input is 18 regions, and each can be either
included or excluded. Trying all 218 combinations will run
well within the time limit. This can either be done with
a backtracking algorith that either picks or doesn’t pick a
region in each step, or one can do a loop with 218 iterations
where each of the 18 bits indicate whether the region should
be included.

5



Problem E

Inverse Divisor Sums

Problem author: Ruben Spaans

The solution is backtracking: Try all ways of factoring

the number N into factors
p
ai
i −1
pi−1 , and at the same time

reconstruct the original number M by multiplying together
paii . Call the backtrack function with the initial values
m = 1, n = N, p = 2. For each step in this function, try
all powers of p such that the above expression divides n. If
it does, divide n by this expression and multiply m by pa

where a is the power found, then call the backtrack function
with p equal to the next prime. Whenever n = 1, m contains
a number such that sum of divisors(m) = n.

Some optimizations are required in order to pass the
time limit. The two following will suffice:

• When the backtrack routine is called with a p satisfying p2−1
p−1 > n there can only be

one factor left. If n− 1 is prime, then n− 1 is the remaining factor and we can add
m(n− 1) to the list of outputs.

• There is only a limited set of values for p, a such that pa−1
p−1 divides N . Precalculate

all such values before doing backtracking, and only use these values during the
backtrack.

6



Problem F

Longest Common Path

Problem author: Ruben Spaans

The main observation is that Per and P̊al’s common path
is always at the beginning of their paths. In an optimal
common path, they’ll never rejoin once they split.

Run one-to-all shortest path from school, and from each
home. Then try all nodes and check if they could have
departed from each other at this node. If going via this
node doesn’t make any of their paths longer, the path from
school to this node is a candidate for the longest common
path. Check the length, and update the length of the longest
common path seen so far.

Floyd-Warshall isn’t fast enough for this problem, Dijkstra was needed in order to
pass within the time limit.

7



Problem G

Birthday Party

Problem author: Geir-Arne Fuglstad

This problem can be solved by inclusion-exclusion type of
counting. Start by initially counting too much, then remove
too much, include too much again and so on. The problem
can be rephrased as a questions about graphs, what is the
probability that there is one or more cycles of length k in
a graph with N nodes where every node has exactly one
directed edge to another node?

Let

T1 =

(
N

k

)
(k−1)!·(N−1)N−k =

N(N − 1) · · · (N − k + 1)

k
(N−1)N−k,

that is the number of ways to choose k people and put them
in a cycle times the number of ways to choose the edges for the remaining nodes. This
necessarily counts a lot of things too many times. Configurations with exactly one cycle
is counted once, configurations with exactly two cycles are counted twice, configurations
with exactly three cycles are counted thrice and so on.

We then compute

T2 =
1

2!

(
N

k

)
(k−1)!

(
N − k
k

)
(k−1)!·(N−1)N−2k =

N(N − 1) · · · (N − 2k + 1)

2!k2
(N−1)N−k,

which counts the number of ways to choose 2k nodes from N nodes and put them in two
cycles times the number of ways to choose the edges for the remaining nodes. Now we
have counted configurations with exactly one cycle 0 times, configurations with exactly
two cycles ones, configurations with exactly three cycles

(
3
2

)
= 3 times and so on.

We countinue this l times until N − (l + 1)k < 0 and take

S = T1 − T2 + T3 − T4 + . . .+ (−1)l+1Tl.

We can confirm that each configuration with exactly a cycles is counted(
a

1

)
−
(
a

2

)
+

(
a

3

)
−
(
a

4

)
+ . . .+ (−1)l+1

(
a

a

)
= 1− (1− 1)a = 1

times. So our total answer is
P = S/(N − 1)N .

For computational purposes the Pi = Ti/(N − 1)N should first be computed in order,
where each Pi is calculated by multiplying Pi−1 by some additional terms, and then
summed in an alternating sum to get P .

8



Problem H

Holey Road

Problem author: Ruben Spaans

This is a shortest path problem. Before running Dijkstra or
something similar, it is necessary to find out what the graph
is. It is not sufficient to let a hole be a node in the graph,
as the car can arrive at different positions at the boundary
of the circle.

When the car travels from one hole to another, it will
travel along one of four possible tangents. These can be
calculated by setting up the necessary equations1. When
the car travels to the next hole, it needs to travel along
the boundary of the circle. This distance can be calculated
by finding the angles of the two tangents on the current
circle, taking their difference and multiply by πr. It is only
possible to travel along a tangent if it does not intersect
with other holes in the road.

Construct a graph where the nodes are the start
position, destination and all possible tangent points. Create an edge for each tangent
that does not cross any other hole, and between each tangent point on a single circle.
Then, run your favourite shortest-path algorithm (Dijkstra, for instance).

1See http://en.wikipedia.org/wiki/Tangent lines to circles#Algebraic solutions

9



Problem I

Candy Store

Problem author: Ruben Spaans (idea by Magnus Lie Hetland)

This problem can be solved with dynamic programming.
This is a variation of the knapsack problem. But instead of
maximizing the value of the items we wish to pick, we want
to calculate the number of ways we can pick candy so that
the total cost is at least C kroner.

Let ai be the cost of candy type i, and T (i, c) be the
number of ways to spend exactly c kroner by buying candy
from the first i types (inclusive). To arrive at T (i, c) we
either bought or didn’t buy the candy of type i − 1; the
number of ways to do so is T (i− 1, c− ai) and T (i− 1, c),
respectively. Hence, we get the recurrence

T (i, c) = T (i− 1, c) + T (i− 1, c− ai).

There are two essentially different ways to calculate the answer: Calculate

∞∑
i=C

T (n, i)

or

2N −
C−1∑
i=0

T (n, i).

The second way is faster, but both ways would pass within the time limit. Naturally ∞
in the first sum would be replaced by the total cost of all candy types, as there are no
ways to spend more money than that.

10



Problem J

Rotating Penguin Maze

Problem author: Jon Marius Venstad

1. Find the path using BFS or DFS, while storing the
pressure plates along the path.

2. Then loop through the path, keeping track of the
number of pressure platess activated.

3. ”Rotate” the directions accordingly when printing
them.

11


