
IDI Open
Programming Contest

March 1st, 2025

Problem Set

A Ant Attack

B Ballfoot Battles

C Crate Chucking

D Divisor Detective

E Exclusive Equation

F Flint Finger (Easy)

G Milk Mystery (Easy)

H Hopping Haven

I Incinerating Incantations

J Timely Treatments

Jury and Problem Writers

Jean Niklas L’orange (Head Judge)

Tobias Meyer Andersen

Dilawar Mahmood

Test Solvers

Johan Sokrates Wind

2

Rules
TL;DR: Teams of up to three persons try to solve as many problems as possible from

a set, without external help.

Before the contest begins, you are allowed to log in on your assigned computer, and
log in on the submission system. You may do nothing else with the computer (such as
starting to write code). You may not touch the problem set before the contest has started.

Contestants are only allowed to communicate with members of their own team, and
the organisers of the contest. You may not surf the web (except for allowed content), read
e-mail, chat on Slack, or similar things. The only network traffic you may generate is from
submitting problem solutions, and access to content specified by the local organisers.

� What you may bring to the contest floor:

– Any written material (Books, manuals, handwritten notes, printed notes, etc).

– Pens, pencils, blank paper, stapler and other useful non-electronic office
equipment.

– NO program using generative AI, such as Github Copilot or ChatGPT.

– NO material in electronic form (CDs, USB pen and so on).

– NO electronic devices (Cellular phone, PDA and so on).

� What you may use during the contest:

– What you brought to the contest floor (see above).

– Your assigned (single) computer.

– The specified system for submitting solutions: https://idio25.kattis.com

– Printers designated by the organiser.

– The external documentation for your language of choice. This is documented
in the tutorial for your language at https://support.kattis.com

– All compilers and IDEs pre-installed on your assigned computer

– Non-programmable tools which are a natural part of the working environment
(such as diff and less).

The problem set consists of a number of problems (usually 8-12). The problem set
will be in English, and given to the participating teams when the contest begins. For each
of these problems, you are to write a program supported by the Kattis system. The jury
guarantees that each problem is solvable in C, C++, Java and Python 3. No guarantees
for other languages are given due to the large number of allowed languages, however the
jury guarantees that for every language there is at least one problem solvable in that
language. It has always been the case that several of the problems were solvable in all
available languages, but there is no guarantee of this.

3

https://idio25.kattis.com
https://support.kattis.com

Your programs should read from standard in and write to standard out. See
https://support.kattis.com for a tutorial and the compiler options for your language
of choice.

The team that solves the most problems correctly wins. If two teams solve the same
number of problems, the one with the lowest total time wins. If two top teams end up
with the same number of problems solved and the same total time, then the team with the
lowest time on a single problem is ranked higher. If two teams solve the same number of
problems, with the same total time, and the same time on all problems, it is a draw. The
time for a given problem is the time from the beginning of the contest to the time when
the first correct solution was submitted, plus 20 minutes for each incorrect submission of
that problem. The total time is the sum of the times for all solved problems, meaning
you will not get extra time for a problem you never submit a correct solution to.

If you think some problem is ambiguous or underspecified, you may ask the judges for a
clarification request through the Kattis system. The most likely response is “No comment,
read problem statement”, indicating that the answer can be deduced by carefully reading
the problem statement or by checking the sample test cases given in the problem, or that
the answer to the question is simply irrelevant to solving the problem.

Input Validation
In general we are lenient with small formatting errors in the output, in particular

whitespace errors within reason. But not printing any spaces at all (e.g. missing the
space in the string “1 2” so that it becomes “12”) is typically not accepted. The safest
way to get accepted is to follow the output format exactly.

For problems with floating point output, we only require that your output is correct
up to some error tolerance. For example, if the problem requires the output to be within
either absolute or relative error of 10−4, this means that

� If the correct answer is 0.05, any answer between 0.0499 and .0501 will be accepted.

� If the correct answer is 500, any answer between 499.95 and 500.05 will be accepted.

Any reasonable format for floating point numbers is acceptable. For instance,
“17.000000”, “0.17e2”, and “17” are all acceptable ways of formatting the number
17. For the definition of reasonable, please use your common sense.

Tips
� Tear the problem set apart and share the problems among you.

� Problems are not sorted by difficulty.

� Try solving the easy problems first. Two problems in this set are tagged with
“(Easy)” to help point you in the right direction.

� If your solution fails on a problem, you can print your program and debug it on
paper while you let someone else work on a different problem on the computer.

� All problems are guaranteed to be solvable in C, C++, Java and Python 3

� Look at the scoreboard if you are unsure which problem to work on next.

4

https://support.kattis.com

Ant Attack
Problem ID: antattack

Minimal rectangle for the sample input.

Gregor is out in the back yard studying all the insects moving
around. In particular, he is inspecting the myriad of ants scattered
out on a large flat stone. Gregor wants to collect all the ants to study
them in his ant terrarium. Given where all the ants are placed right
now, Gregor wants to know what is the smallest box that could cap-
ture all the ants he sees right now at the same time. Smallest is
measured in the area of the bottom of the rectangular box. He will
capture all the ants simulatenously, by placing the box on the stone,
and may therefore rotate the box at any angle to minimize the size of
the box. The solution to the sample input is illustrated in the figure.

Input
The first line of input contains the number N , which is the number
of ants on the stone. On the following N lines contain xi and yi
which is coordinates of the i’th ant in a flat cartesian plane.

It is given that no points coincide, and that the solution area is
non-zero.

Output
Output the smallest area of a rectangle that contains all the ants. Ants
may be located arbitrarily close to an edge of the box, meaning they can effectively be on the edge of the box. The
answer must be accurate to within an absolute and relative error of 10−5.

Limits
• 1 ≤ N ≤ 105

• −1 ≤ xi, yi ≤ 1

Sample Input 1 Sample Output 1

5
-0.2 -0.2
0.2 -0.1
0.0 0.1
0.5 0.2
0.1 0.1

0.18823529411764706

6

Ballfoot Battles
Problem ID: ballfootbattles

You love the sport of ballfoot. It is the futuristic version of football where many teams can play at once! There is
still only one ball, so one goal is scored at the time, and each team starts with zero goals. Being busy completing the
mandatory assignments for your algorithms and datastructures course, you unfortunately do not have time to watch
todays game between all of your T favorite teams!

The best you can do is check your futuristic phone from time to time and see what the current score is. You will
therefore know the score at N arbitrary moments in the match, and you always check what the final result is. Having
seen the scoreboard a few times throughout the match makes you wonder, in how many ways could the match have
been played? This question is about how many ways the game could have gone in terms of the order of which team
scores which goal. If one team wins four to zero, it must have been 4 goals in a row for that team. If a team wins two
to one, there are three different sequences of goals that could reach that outcome.

Input
The first line contains two integers. T describes the number of teams participating in the match. N describes the
number of times you check you phone and peek at the score. Then follows N lines, each of which containing the T
integers gt,n, which is the number of goals team t has at time point n in the match. The last observation is always the
final scoreline.

Output
Output the number of ways the match could have given the observations. The answer can be very large, so output the
result modulo 109 + 7.

Limits
• 1 ≤ T ≤ 100

• 1 ≤ N ≤ 1000

• 1 ≤ gt,n ≤ 50000

Sample Input 1 Sample Output 1

3 4
0 1 2
0 3 2
2 3 2
3 3 2

3

8

Crate Chucking
Problem ID: cratechucking

Illustration of four consecutive valid states of the crate.

You are playing a game on a grid. You must move a 2x1x1
crate from the starting cell where it starts in an upright posi-
tion, to the target cell where it must also be in an upright po-
sition. The game is played by toppling over the crate in one of
the four cardinal directions on a cartesian grid. Toppling over
a standing create means it will occupy the two next cells in the
direction you toppled it. A crate lying down can be toppled
in two ways, either such that it keeps lying on its side, or in
a way that makes it stand up. Toppling a standing crate will
always make it lie down. When toppling the create over, it will
occupy the neighboring squares in the direction it was pushed.
In the example figure there are four consecutive valid states to
illustrate how the crate moves on the grid.

To make the game more interesting, the board it is played
on contains obstacles. Some cells are therefore blocked, meaning the crate may never occupy those squares.

In addition to reaching the final cell in an upright position, you want to minimize the amount of energy used. To
topple a standing crate over only costs one unit of energy. Toppling over a lying crate such that is still lies sideways
costs two units of energy. Taking it from a lying to standing position costs 3 units of energy.

You use your keyboard’s four arrow keys to indicate in which direction you want to move the crate next. There is
only one problem, your keyboard is broken! It is broken in a peculiar way where you may never press the same arrow
key twice in a row. In the starting position you may assume no arrow key was the previous button press.

What is the least amount of energy you must use to reach the final position, given your faulty keyboard?

Input
The first line of input contains two numbers. H , which is the height of the cartesian grid, and W , which is the width.
H lines follow which are strings of W characters each. The strings contain the following characters.

• ".", indicating that the cell free to move on

• "B", indicating that the cell is blocked and unavailable to the crate

• "S", indicating the starting position of the crate, where it stands at the start of the game

• "E", indicating the ending position of the crate, where it must stand at the end of the game

Output
Output the least amount of energy used to move from the starting to the ending position. If no solution exists under
the given limitations you must output "impossible".

Limits
• 1 ≤ H,W ≤ 200

Sample Input 1 Sample Output 1

4 4
S...
B...
B...
B..E

16

Sample Input 2 Sample Output 2

2 3
S..
E..

6

Divisor Detective
Problem ID: divisordetective

Ådne is a software engineer who loves solving algorithmic puzzles. His latest project is a tool called "Divisor Detec-
tive" that analyzes number patterns.
While testing the tool with his colleague, they encountered an interesting mathematical challenge:

"For each integer from 1 to N , we need to count how many divisors it has, then sum up all those counts.
But with these large inputs, we need an efficient algorithm to compute this quickly!"

Can you help them determine the sum of the divisor counts for all integers from 1 to N?

Input
The input consists of a single line containing one integer N .

Output
Output a single integer: the sum of the number of positive divisors of every integer from 1 up to N .

Limits

• 1 ≤ N ≤ 1010

Sample Input 1 Sample Output 1

6 14

Sample Input 2 Sample Output 2

10 27

12

Exclusive Equation
Problem ID: exclusiveequation

You and your friends are preparing for an exciting intellectual challenge this weekend. Each friend selects a
number and writes it on multiple pieces of paper. You are given all these pieces of paper, along with a target number.
Your task is to determine whether it is possible to produce the target number by combining the given numbers on the
pieces of paper using only the exclusive-or (XOR) operator. You may use as many pieces of paper as you like, but
only each piece once. Before using any pieces of paper, the current value produced is zero.

The XOR operator is a binary operation that takes two numbers and operates on their binary representations. It
performs a logical XOR on each pair of corresponding bits: the result is 1 if the bits are different, and 0 if they are the
same. For example, 5 XOR 3 = 6 because:

5 in binary is 101
3 in binary is 011
XOR result is 110, which is 6 in decimal.
Given the numbers on the pieces of paper and the target number, can you determine if the target can be achieved

using the XOR operation?

Input
The first line contains two integers N (number of participants) and T (target number). Then follow N lines, each
containing an integer Ni (participant’s number) and Ki (number of copies available, Ki ≥ 1).

Output
Output "possible", if it is possible to produce the target number, otherwise output "impossible".

Limits
• 1 ≤ N ≤ 35

• 0 ≤ T < 264

• 1 ≤ Ni < 264

• 1 ≤ Ki ≤ 100

Sample Input 1 Sample Output 1

4 12
1 2
5 2
11 2
8 2

possible

Sample Input 2 Sample Output 2

4 12
1 2
5 2
11 2
4 2

impossible

14

Flint Flinger
Problem ID: flintflinger

During medieval times, the catapult was a common siege weapon used to attack neighboring cities at a distance. Before
they were invented, however, the placement of cities did not account for this future technology. Some cities therefore
settled very close to each other, which now puts them under the constant threat of being launched large boulders of
flint at!

Each city needs to evaluate how large the threat is. They do so by counting the number of other cities that can launch
flint boulders at them. To calculate this correctly they also take into consideration how mature the local technology is,
which causes some variation in the range of the catapults.

Input
The first line of input contains the number N , the number of cities. Then follows N lines, with three numbers each.
The first two numbers are the xi and yi coordinates of the city, and the third number, ri is the range of the catapult in
that city. You may consider the cities as points in the cartesian plane, and it is guaranteed that no two cities coincide
on the same coordinate. These three decimal numbers are separated by a single space and always have one digit after
the decimal point.

Output
For each city, output the number of cities that can launch a flint boulder at it on a separate line.

Limits
• 1 ≤ N ≤ 100

• 0 ≤ xi, yi, ri ≤ 100

Sample Input 1 Sample Output 1

4
10.0 10.0 11.0
20.0 10.0 2.0
50.0 50.0 100.0
90.0 90.0 10.0

1
2
0
1

Sample Input 2 Sample Output 2

2
0.2 0.0 0.9
1.1 0.0 0.9

1
1

16

Milk Mystery
Problem ID: milkmystery

Megatron, a mischievous orange kitten, has discovered N bowls of milk in the kitchen. Being a very picky cat, he has
developed a sophisticated rating system for milk - each bowl has a "deliciousness score" that represents how tasty he
thinks it will be. The problem is, Megatron’s human has caught on to his milk-stealing habits and installed a security
system. The system will only let Megatron drink from exactly K consecutive bowls before it activates. Megatron
needs to figure out which sequence of K consecutive bowls will give him the maximum total deliciousness before the
alarm goes off!

Input
The first line contains two integers N and K, where N is the total number of milk bowls and K is how many
consecutive bowls Megatron can drink from. The second line contains N integers d1, d2, . . . , dN , where di represents
the deliciousness score that Megatron assigns to the ith bowl of milk.

Output
Output a single integer - the maximum sum of deliciousness scores that Megatron can achieve by drinking from K
consecutive bowls.

Limits

• 1 ≤ K ≤ N ≤ 100

• 0 ≤ di ≤ 100

Sample Input 1 Sample Output 1

5 2
1 3 2 5 1

7

Sample Input 2 Sample Output 2

4 3
2 2 2 2

6

18

Hopping Haven
Problem ID: hoppinghaven

Oh no! The Harrowfall Horde has, once more, decided to launch their magic squares against us. And again, they’ve
sealed us within a great rectangular wall!

While it won’t hurt our people – magic squares never do – every hit will hurt our economy. They’ll manage to
damage houses or crops, and that is really annoying. Fortunately, a magic square will only deal damage the first time
it hits the kingdom: Subsequent hits from the same square do no damage.

Since we captured some magic squares last time, we’ve managed to uncover their secrets. After magic square i
appears, it teleports ∆xi units horizontally and ∆yi units vertically on every odd-numbered second. Also, instead of
colliding with each other, it seems like multiple magic squares are able to occupy the same tile. And when a magic
square moves beyond the boundaries of the great rectangular wall, it vanishes. Thanks to our spies, we also know
when and where magic square i will appear: It seems to always be somewhere on top of the great rectangular wall.

This by itself won’t help us much: After all, our rectangular kingdom is immovable. . . or is it? Thanks to the
tireless efforts by the Institute of Dimensional Invocation (IDI), we have successfully reverse-engineered the magic
behind the squares. At last, our kingdom has legs!

On positive even-numbered seconds, we can either remain in place or shift exactly one unit in either a horizontal
or vertical direction, though never both at once. While the kingdom can now move, it cannot be placed on top of water
nor the great wall – unlike the magic squares, which can.

Given this information, you, the shell-script shaman, have been tasked with determining how many magic squares
can be avoided. But the king isn’t just interested in the number of magic squares the kingdom can avoid – he also
wants to know the number of distinct movement sequences that achieve this. According to him, reporting this to the
Hopping Haven will severely damage their morale.

Input
The first line of the input contains the integers W , H and N , the width and height of the map, as well as the number
of magic squares.

Then follow H lines, each with exactly W characters each, representing the map. The map will only contain the
following characters:

• ‘.’, representing land

• ‘~’, representing water

• ‘#’, representing a piece of the great rectangular wall

• ‘x’, representing a piece of our rectangular kingdom

Finally, N lines follow, each representing a single magic square. Each line contains 5 integers, ti, xi, yi, ∆xi, ∆yi,
denoting the time ti the magic square appears at ⟨xi, yi⟩, teleporting ⟨∆xi,∆yi⟩ units every odd-numbered second.

Rows are indexed from the top, so the first row is y = 0, the second is y = 1, and so on.

Output
Output the number of magic squares the kingdom can evade and the number of distinct move sequences that achieve
this, assuming time starts at second 0. As the number of move sequences may be very large, output both numbers
modulo 1 000 000 007.

The move sequence ends at the latest time at which any magic square vanishes.

Limits
• 3 ≤ W,H ≤ 50

• 0 < N < 100

• There is at most 6 active magic squares at any given time

• The border of the map will only contain ‘#’ characters, and ‘#’ characters will only appear there

• All ‘x’ characters on the map form a rectangle

• 0 ≤ ti < 200, and ti is always an even number

• ⟨xi, yi⟩ is always on the border of the map

• |∆xi| < W and |∆yi| < H

• 0 < |∆xi|+ |∆yi|

Sample Input 1 Sample Output 1

5 5 1
#####
#..~#
#xx.#
#xx.#
#####
0 1 0 0 1

1 2

Sample Input 2 Sample Output 2

5 5 2
#####
#..~#
#xx.#
#xx.#
#####
2 1 0 0 1
10 3 4 0 -1

2 48

Sample Input 3 Sample Output 3

5 5 3
#####
#...#
#...#
#xx.#
#####
10 0 0 1 0
14 2 0 0 1
14 2 4 0 -1

1 627232

Incinerating Incantations
Problem ID: incineratingincantations

Ivar is an experienced mage and want to help his community celebrating Saint John’s Eve. They want a big bonfire,
and with his spells, he can help them make the bonfire even bigger. Ivar has in total N spells he can cast, but can only
cast each spell at most once. Additionally, he only has M mana, so he may not be able to cast all the spells he knows.

And the spells are complicated and tedious to work with. They affect many different things – including future
spells you may want to cast. More specifically, when casting a spell i, the following happens in this exact order:

1. It consumes mi mana (Ivar can’t cast it if he does not have enough mana)

2. It increases the fire power by fi

3. It increases the mana cost of the next spell cast by mnext
i

4. It increases the mana cost of all following spells cast by mall
i

5. It increases the fire power of the next spell cast by fnext
i

6. It increases the fire power of all following spells cast by fall
i

Of course, the cost of a spell cannot go negative: If a spell costs 1 mana to cast and is reduced by 2 (i.e. increased
by −2), it will cost 0 mana to cast, not give you back 1 mana when casting. Similarly, the fire power of a spell cannot
go negative either.

Ivar isn’t entirely sure which order he should cast his spells however, and he’s come to you to get some help on the
matter. Can you help Ivar find out how much additional fire power he can add to the bonfire, if he optimally chooses
which spells to cast, and in what order?

Input
The first line contains two integers N and M , specifying the total number of spells Ivar knows, and his current mana.
Then follow N lines, specifying a spell. Each spell line contain 6 integers mi, fi, mnext

i , mall
i , fnext

i , and fall
i , as

described above.

Output
Output the most fire power Ivar can emit.

Limits
• 0 < N ≤ 9

• 0 ≤ M ≤ 100

• 0 ≤ mi, fi ≤ 200

• −200 ≤ mnext
i ,mall

i , fnext
i , fall

i ≤ 200

Sample Input 1 Sample Output 1

3 3
10 10 0 0 0 0
1 0 -3 -3 -10 -2
7 4 -8 0 0 -2

6

Sample Input 2 Sample Output 2

5 3
0 0 0 0 0 0
10 0 0 1 1 3
0 0 0 0 0 0
0 0 -8 -1 0 -100
0 0 0 0 0 0

7

Timely Treatments
Problem ID: timelytreatments

Dr. Kassandra is a busy doctor in a hospital in Barcelona. She has N patients waiting for treatment, where each patient
i requires ti time units for their treatment and must be fully treated by deadline di.
Kassandra can only treat one patient at a time. She starts working at time 0 and can treat patients in any order,
continuing without breaks if she wishes. Once she starts treating a patient, she must complete their treatment without
interruption.
For example, if she has three patients:

• Patient 1: t1 = 3, d1 = 5

• Patient 2: t2 = 2, d2 = 2

• Patient 3: t3 = 1, d3 = 3

She could treat Patient 2 first (finishing at time 2), then Patient 3 (finishing at time 3). Note that Patient 3 must be
treated continuously for 1 time unit, so starting at time 2 means they would finish at time 3. While Patient 1 could
theoretically be treated within their deadline if scheduled first, treating Patients 2 and 3 instead leads to the maximum
possible number of treated patients.
Your task is to help Kassandra determine the maximum number of patients she can successfully treat while meeting
their deadlines.

Input
The first line contains an integer N , the number of patients.
Each of the following N lines contains two integers, ti and di, where ti is the time required to treat patient i, and di is
the deadline by which their treatment must be completed.

Output
Output a single integer: the maximum number of patients whose treatments can be completed by their respective
deadlines when scheduled optimally.

Limits

• 1 ≤ N ≤ 106

• 1 ≤ ti ≤ 106

• 1 ≤ di ≤ 109

Sample Input 1 Sample Output 1

3
3 5
2 2
1 3

2

Sample Input 2 Sample Output 2

5
2 3
2 1
5 10
3 10
2 2

3

