
IDI Open
Programming Contest
March 19th, 2022

Problem Set

A Another Ancient Cipher

B BBBBBB

C Changing Complexity

D Delicious Diet for Ducks

E Eyeballing Extraterrestials

F Frugal Ferry Fees

G Game Party (Easy)

H Healthy Headgear

K Kattis Completionist (Easy)

L Laser-linked Lighthouses

Jury and Problem Writers

Nils Barlaug

Sondre Sortland

Jean Niklas L’orange (Head Judge)

2

Rules
TL;DR: Teams of up to three persons try to solve as many problems as possible from

a set, without external help.

Before the contest begins, you are allowed to log in on your assigned computer, and
log in on the submission system. You may do nothing else with the computer (such as
starting to write code). You may not touch the problem set before the contest has started.

Contestants are only allowed to communicate with members of their own team, and
the organisers of the contest. You may not surf the web (except for allowed content), read
e-mail, chat on Slack, or similar things. The only network traffic you may generate is from
submitting problem solutions, and access to content specified by the local organisers.

� What you may bring to the contest floor:

– Any written material (Books, manuals, handwritten notes, printed notes, etc).

– Pens, pencils, blank paper, stapler and other useful non-electronic office
equipment.

– NO material in electronic form (CDs, USB pen and so on).

– NO electronic devices (Cellular phone, PDA and so on).

� What you may use during the contest:

– What you brought to the contest floor (see above).

– Your assigned (single) computer.

– The specified system for submitting solutions: https://idio22.kattis.com

– Printers designated by the organiser.

– The external documentation for your language of choice. This is documented
in the tutorial for your language at https://idio22.kattis.com/help

– All compilers and IDEs pre-installed on your assigned computer

– Non-programmable tools which are a natural part of the working environment
(such as diff and less).

The problem set consists of a number of problems (usually 8-12). The problem set
will be in English, and given to the participating teams when the contest begins. For each
of these problems, you are to write a program supported by the Kattis system. The jury
guarantees that each problem is solvable in C, C++, Java and Python 3. No guarantees
for other languages are given due to the large number of allowed languages, however the
jury guarantees that for every language there is at least one problem solvable in that
language. It has always been the case that several of the problems were solvable in all
available languages, but there is no guarantee of this.

Your programs should read from standard in and write to standard out. See https:

//idio22.kattis.com/help for a tutorial and the compiler options for your language of
choice.

3

https://idio22.kattis.com
https://idio22.kattis.com/help
https://idio22.kattis.com/help
https://idio22.kattis.com/help

The team that solves the most problems correctly wins. If two teams solve the same
number of problems, the one with the lowest total time wins. If two top teams end up
with the same number of problems solved and the same total time, then the team with the
lowest time on a single problem is ranked higher. If two teams solve the same number of
problems, with the same total time, and the same time on all problems, it is a draw. The
time for a given problem is the time from the beginning of the contest to the time when
the first correct solution was submitted, plus 20 minutes for each incorrect submission of
that problem. The total time is the sum of the times for all solved problems, meaning
you will not get extra time for a problem you never submit a correct solution to.

If you think some problem is ambiguous or underspecified, you may ask the judges for a
clarification request through the Kattis system. The most likely response is “No comment,
read problem statement”, indicating that the answer can be deduced by carefully reading
the problem statement or by checking the sample test cases given in the problem, or that
the answer to the question is simply irrelevant to solving the problem.

Input Validation
In general we are lenient with small formatting errors in the output, in particular

whitespace errors within reason. But not printing any spaces at all (e.g. missing the
space in the string “1 2” so that it becomes “12”) is typically not accepted. The safest
way to get accepted is to follow the output format exactly.

For problems with floating point output, we only require that your output is correct
up to some error tolerance. For example, if the problem requires the output to be within
either absolute or relative error of 10−4, this means that

� If the correct answer is 0.05, any answer between 0.0499 and .0501 will be accepted.

� If the correct answer is 500, any answer between 499.95 and 500.05 will be accepted.

Any reasonable format for floating point numbers is acceptable. For instance,
“17.000000”, “0.17e2”, and “17” are all acceptable ways of formatting the number
17. For the definition of reasonable, please use your common sense.

Tips
� Tear the problem set apart and share the problems among you.

� Problems are not sorted by difficulty.

� Try solving the easy problems first. Two problems in this set are tagged with
“(Easy)” to help point you in the right direction.

� If your solution fails on a problem, you can print your program and debug it on
paper while you let someone else work on a different problem on the computer.

� All problems are guaranteed to be solvable in C, C++, Java and Python 3

� Look at the scoreboard if you are unsure which problem to work on next.

4

Another Ancient Cipher
Problem ID: anotherancientcipher

You have probably heard about the Caesar cipher: It is one of the most well-known ciphers out there. In an
alternative timeline, the Roman emperor Caesar Augustus builds upon this cipher to create an encryption even harder
to break: The Augustus cipher.

In the Caesar cipher, you shift each letter by a certain number of digits forwards or backwards, and start over at the
other side if you roll over. For the English alphabet, the formulas for encrypting and decrypting the Caesar cipher are

ECaesar(Mi, n) = (Mi + n) mod 26

DCaesar(Ci, n) = (Ci − n) mod 26

Where Mi and Ci is the ordinal number of ith letter in the message and the ciphertext, respectively, and the number
n is the integer to shift by. (The ordinal number of a letter is defined as a → 0,b → 1, . . . ,z → 25 for the Latin
alphabet.)

The Augustus cipher goes above and beyond, and uses a key to encrypt messages. The ith letter of the message is
defined as

EAugustus(Mi,Ki) =

{
ECaesar(Mi,Ki) if Mi is even
ECaesar(Mi,−Ki) if Mi is odd

If there are more letters in the message than in the key, the key is repeated. For example, the 4th 0-indexed letter of
the key key is k, the 5th is e and so on.

Adam has decided to use this cipher for his new social media platform CyberLounge, and has implemented code
to encrypt the messages with the Augustus cipher. But Adam hasn’t yet found a way to decrypt the messages! Could
you help him with the decryption algorithm?

Input
The input consists of two lines. The first line contains the encrypted string C, and the second line contains the key K.
Both strings contain only lowercase characters from the Latin alphabet (a-z).

Output
Output the decrypted message.

Limits
• 0 < |C|, |K| ≤ 200

Sample Input 1 Sample Output 1

ccvpvygcoyjc
cryptography

attackatonce

Sample Input 2 Sample Output 2

tnkkmbwctzhdjesfqugjmgcyzlpxeeyclhg
augustusisthebest

thequickbrownfoxjumpsoverthelazydog

Sample Input 3 Sample Output 3

unnmzaxunlzjdzfnnejdx
z

toolazytomakeagoodkey

6

BBBBBB
Problem ID: bbbbbb

Our favourite game developer Saskia has started on a new game, called BBBBBB! In this game, you’re Captain
Biryan and have to save your crew. They have been scattered around in an alternate dimension named bbbbbb.

The game consists of a number of puzzles in a 2D grid, where you are the @ symbol and have to get to the X. #
represents immovable blocks, and ^ and v are deadly spikes. The player, playing Captain Biryan, can do one of three
actions:

• Move one tile right (if the tile does not contain a #)

• Move one tile left (if the tile does not contain a #)

• Flip gravity: If gravity is pulling down, it is now pulling you up instead (and vice versa)

#####vv####
#
#
#####v
@ X#
######^^###

Figure 1: Sample Input 1, and one of the ways to the X with the least number of gravity flips.

The game logic is rather short and can be summarised by this pseudocode:

gravity_direction = down
while true:
if player is at the location of the ’X’:
return WIN

if player is at the location of a ’^’ or ’v’:
return DEAD

if player does not touch the ground:
player_y += 1 * gravity_direction
continue (restart loop from the top)

if player touches the ground:
perform_next_player_action()

Touching the ground is defined as being placed exactly one tile above or below a #, depending on which way
gravity pulls.

To ensure that there’s a good variety of puzzles in the game, Saskia wants to implement a shortest path algorithm
that finds the minimum number of gravity flips needed to solve a puzzle.

Input
The first line consists of two integers W and H , representing the width and the height of the 2D grid to be parsed.
Then follows H lines each consisting of a string of length W . Each string can only contain the characters ‘ ’, ‘#’, ‘v’,
‘^’, ‘@’ and ‘X’.

Output
Output the minimum number of gravity flips needed to solve the puzzle, along with the number of user actions needed.
If there are multiple solutions with the same number of gravity flips, output the one with the least amount of user actions
needed.
If there is no valid path to the exit, output ‘impossible!’ (without the quotes).

Limits
• 4 ≤ W,H ≤ 450

• The border of the map can only contain ‘#’, ‘v’ and ‘^’ tiles.

• The grid will only contain the characters‘ ’, ‘#’, ‘v’, ‘^’, @ and X, and there will be exactly one @ and one X
symbol in the grid.

Sample Input 1 Sample Output 1

11 6
#####vv####
#
#
#####v
@ X#
######^^###

4 15

Sample Input 2 Sample Output 2

10 4
#^^^^^^^^#
#
#@ X#
##vvvvvv##

impossible!

Changing Complexity
Problem ID: changingcomplexity

Creating star ship software modules and components isn’t easy, especially when the engineering and operations
staff on those ships think it’s easy to maintain backwards compatibility. “Remodulate the deflector emitters”? “Reverse
the polarity of the shield matrix”? The shield matrix was removed from the deflector shields 3 versions ago! We gave
them ample time to migrate their procedures and training to the newer quantum computers that now does the graviton
flux analysis. We even said we could help out with documentation and resolving common procedures, but it turns out
we just can’t teach an old dog new tricks. . .

To maintain the old ways of doing it, we’ve implemented a shield matrix translation layer so that they can use the
same interface as they’ve always used. However, with the newer quantum computers changing their internal logic,
we’ve been forced to rewrite the translation layer completely!

That being said, not everyone’s angry about maintaining a legacy interface. Our newest hire, Glaucia, actually
seems to love maintenance and backwards compatibility work. And she’s very eager to get this to work.

While the rest of the team has taken a vacation at Sikaris, Glaucia wanted to take a stab at the rewrite project.
Fortunately, the team’s been good at mapping up all the different tasks required to complete the rewrite, and has
assigned all tasks their complexity and dependencies.

None of the rewrite tasks are too challenging for Glaucia. However, some of the tasks are quite boring. To avoid
too much boredom at the same time, Glaucia has decided to complete the different tasks in alternating difficulty: They
will first pick the least complex task of all the tasks they can perform, then pick the most complex task they can
perform. They repeat this pattern until all tasks have been completed.

Glaucia can of course pick any task they want to, as long as it’s not been completed already, or some of its
requirements have not yet been completed.

Of course, Glaucia managed to complete the entire rewrite project before the rest of the team came back from
Sikaris. Unfortunately, the git history is a bit of a mess, and although it is not essential for anything, Glaucia’s
manager wants to know which order they performed the tasks. Can you help their manager reconstruct which order
Glaucia performed the tasks?

Input
The first line contains two integers, V and E, the number of tasks and the number of different requirements, respec-
tively. The complexity of a task is given by its ID: Task 1 has 1 complexity, task 2 has 2 complexity, and so on.

Then follow E lines, each representing a requirement. Each line contains two integers, ui and vi, indicating that
task vi can only be completed if ui has been completed.

As the input may be very large, you should consider buffering it.

Output
Output

V∑

i=1

i×Oi

where Oi is the complexity of the ith task that was completed by Glaucia.

Limits
• 1 ≤ V ≤ 200 000

• 0 ≤ E ≤ min(400 000, V (V−1)
2)

• 0 < ui, vi ≤ V

• For all i ̸= j: If ui = uj , then vi ̸= vj

• The tasks form a forest of DAGs.

Sample Input 1 Sample Output 1

7 8
1 6
2 4
3 1
4 6
5 1
5 4
7 2
7 5

114

Sample Input 2 Sample Output 2

6 4
1 5
1 6
3 4
6 2

78

Sample Input 3 Sample Output 3

200 0 2025050

Delicious Diet for Ducks
Problem ID: deliciousdietforducks

Photo by Michael Anfang

Duckies! Valarie loves them so much that she got her own pet duck, which
she has called Quackie Chan. Of course, as a mathematician, she wants to op-
timise Quackie’s happiness: everything from the duck pond, playtime and food
choices. But she hasn’t picked out the optimal duck treat yet.

Valarie has done some due diligence, however: She has found 3 shops selling
duck treats nearby, and all of them provide a wide variety of treats. In fact, they
are so unique that all the different treats a shop sells aren’t provided by any other
shop.

To figure out which of the treats are the best, Valarie is going to let Quackie
decide between two different treats every day. The one Quackie prefers is the
winner and will be compared with another the next day, until all have been eval-
uated.

Valarie has given every treat a score from 1 to 100, as part of the due dili-
gence. A score of 1 means she thinks Quackie won’t like it at all, and a score of
100 means she thinks Quackie will love it.

Because she doesn’t want Quackie to evaluate the treats by ascending or
descending score, she has planned to do the following semi-random method of
picking the new treat to evaluate against:

She first picks the lowest scoring treat that Quackie hasn’t yet evaluated from
each shop. Then she will pick the treat from store Sx with probability

Sx

SA + SB + SC

where SA is the score for the treat from the first shop, SB for the second shop, and SC for the last shop.
Of course, this method will break down if all treats from one shop have been evaluated! Valarie knows how to

handle that, but she is curious which of the shops will have all their treats evaluated first. Assuming she already has a
treat to compare with, can you help her?

Input
The first line contains an integer A, the number of treats in the first shop. Then follows a single line with A integers
ai, representing the score of all the unique treats in that shop. This pattern repeats for the remaining two shops, where
B/bj is the second shop, and C/ck is the last shop.

Output
Output three numbers on three lines: The probability that the first shop will have their treats evaluated first, the
probability that the second shop will have their treats evaluated first, and the probability that the last shop will have
their treats evaluated first.

All numbers must have a relative or absolute error of at most 10−6.

Limits
• 0 < A,B,C ≤ 250

• 0 < ai, bj , ck ≤ 100, for 0 ≤ i < A, 0 ≤ j < B, 0 ≤ k < C

Sample Input 1 Sample Output 1

1
1
1
2
1
3

0.16666666666666666
0.33333333333333333
0.5

Sample Input 2 Sample Output 2

2
1 1
4
1 5 5 5
3
1 2 2

0.31676683165958763
0.42124927454905214
0.26198389379136006

Eyeballing Extraterrestials
Problem ID: eyeballingextraterrestials

Nevada has been working hard to incentivise companies to move their offices there, both by active forest restoration
and tax incentives. And it has worked! Companies moved their main offices there, and people soon followed suit.

Most families decided to buy houses along the Nevada state route 375 (SR 375), which for our purposes can
be considered a long non-branching road. This previously desolate highway is now the location of N houses, some
possibly vacant, all on the same side of the road. All the F families that live here have a lot of money. So much money,
in fact, that they all have a vacation house as well. Because they all now love Nevada so much, they have obviously
decided to have their vacation house along the SR 375 as well. The home of family i is located at locH,i and their
vacation house is located at locV,i.

Lately, a lot of explosions and alien sounds have come from Area 51. Although this family neighbourhood isn’t
too religious about the entire alien thing, they are all a bit cautious. What if there actually are aliens escaping, and
what if they manage to kidnap and steal the identities of one of the families? Or maybe they will just occupy a vacant
house without us noticing?

“The Surveillance Camera Company” (SCC) has for that reason seen great potential for selling a lot of cameras
to this recently rich suburban area. They have managed to encourage all the families to “observe” and “take care of”
their neighbours by watching them through surveillance cameras.

More specifically, they’ve gone to family i = 1 and asked what kind of camera package they want: They can either
pick one that will cover the nearest Hi houses near their home (excluding their own), or one that covers the nearest Vi

houses near their vacation home (again excluding their own). Every family always picks one package, the one for the
house with the least cameras already placed near their neighbour’s houses on average. If there is a tie, they prefer to
have the cameras near their homes.

Mathematically speaking, if hi,j is the jth closest house to family i’s home, and vi,j is the jth closest house to
their vacation house, then they will pick the home package if and only if

∑Hi

j=1 hi,j

Hi
≤

∑Vi

j=1 vi,j

Vi

Of course, all Mi family members want their own surveillance camera to watch on, so they buy and place Mi

cameras for each neighbouring house they want to “observe”. Then, the surveillance camera seller continues on to the
next family (i+ 1) until all the families have bought a camera set.

A vague, yet menacing government agency has heard about the sales of these cameras. They wonder if the secu-
rity’s tight enough that they need to add in additional measures, or if the neighbourhood “watch” is sufficient enough.
For that reason, they need to detect whether there are enough cameras near a range of continuous houses, and they
need your help.

Input
The first line contains two integers, N and F : The number of houses and the number of families.

Then follow F lines, one for each family. Each line contains 5 integers: Mi, locH,i, Hi, locV,i and Vi, as described
in the problem statement above.

Finally, a line with an integer Q follows, representing the number of queries the vague, yet menacing government
agency wants to perform. Then Q lines follow, each containing two integers Qstart,i and Qend,i, representing the
query “how many cameras are there in the house range [Qstart,i, Qend,i]?”.

Output
For each query, print out the total number of cameras in that particular house range after all cameras have been
installed.

Limits
• 2 < N ≤ 200 000

• 0 < F < 100 000

• 0 < locH,i, locV,i ≤ N

• 0 < Hi, Vi < N , and Hi and Vi are divisible by 2

• 0 < Mi < 10

• 0 < Q < 20 000

• 0 < Qstart,i ≤ Qend,i ≤ N

• Families can live with other families in the same house. They can even live at someone’s vacation house, and
can share a vacation house with another family.

Sample Explanation

Family 1:
╭──┬──┬──┬──┬──┬──┬──┬──┬──┬──╮
│H │h │h │h │hv│ V│ v│ │ │ │ h avg = 0
├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤ v avg = 0
│ 0│ 0│ 0│ 0│ 0│ 0│ 0│ 0│ 0│ 0│ �� H
╰──┴──┴──┴──┴──┴──┴──┴──┴──┴──╯
Family 2:
╭──┬──┬──┬──┬──┬──┬──┬──┬──┬──╮
│h │H │h │h │hv│ v│ V│ v│ v│ │ h avg = 2.25
├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤ v avg = 0.75
│ 0│ 3│ 3│ 3│ 3│ 0│ 0│ 0│ 0│ 0│ �� V
╰──┴──┴──┴──┴──┴──┴──┴──┴──┴──╯
Family 3:
╭──┬──┬──┬──┬──┬──┬──┬──┬──┬──╮
│ │ │ │ │ v│hv│HV│hv│ v│ │ h avg = 2
├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤ v avg = 2.75
│ 0│ 3│ 3│ 3│ 5│ 2│ 0│ 2│ 2│ 0│ �� H
╰──┴──┴──┴──┴──┴──┴──┴──┴──┴──╯
End result:
╭──┬──┬──┬──┬──┬──┬──┬──┬──┬──╮
│ 0│ 3│ 3│ 3│ 5│11│ 0│11│ 2│ 0│
╰──┴──┴──┴──┴──┴──┴──┴──┴──┴──╯

Figure 1: Each step of the camera installation in Sample Input 1. H is the family’s home, h is their closest neighbours,
V is their vacation home, and v is their closest vacation home neighbours

Sample Input 1 Sample Output 1

10 3
3 1 4 6 2
2 2 4 7 4
9 7 2 7 4
4
1 3
4 6
7 7
6 10

6
19
0
24

Frugal Ferry Fees
Problem ID: frugalferryfees

Here at Mercury Merchants, we do not only sell grain, leather and high-quality wood, we also deliver it straight to
our customer’s door! And if we don’t have it in stock, we simply send it by horse and cart from the nearest town.

Of course, getting the goods delivered over water is an entirely different matter, as we don’t own any ships our-
selves. In order to save costs for ferry fees, we happily formed an agreement with Charon Corporation some time ago.
The prices we get for ferry trips are amazing, although our couriers are a bit creeped out by the ferrymen: They are all
slender, tall men in black hoods, and all of them are named Charon. Oh well – some sleepless nights are warranted in
the pursuit of profit and increased margins.

Figure 1: Map over Sample Input 1

However, Charon Corporation has had to raise their prices quite significantly since the black plague due to “ab-
normal demand for other services we provide”, according to their sales representative (also named Charon). While the
prices are still much better than Charon Corporation’s competitors, our bottom line will turn red if we don’t optimise
the ferry fees.

The solution to our problems is quite simple: While our couriers in the past took the shortest path from A to B,
we’ll now order them to take the route which minimises ferry costs instead.

Input
The first line contains two integers, V and E, the number of cities and the number of cart routes between them.
Then follow E lines, describing the cart routes. Each line contains two integers town1i and town2i, describing an
undirected cart route between the two towns.

Next follows a single line containing an integer F , representing the number of ferry lines Charon Corporation has
set up. F lines follow, all with three integers each: town1i, town2i and costi, where the two first integers denote the
towns the ferry go via, and costi, which is the number of oblates you have to pay to Charon Corporation for the trip.

Finally a line with an integer Q follows, representing the number of trips you have to perform. Q lines follow, and
each contains two integers town1i and town2i, describing that you have to travel from town 1 to town 2.

As the input may be very large, you should consider buffering it.

Output
Output the minimum number of oblates needed to perform all travels.

Limits
• 1 < V < 200 000, 0 ≤ E < 500 000

• 0 < F < 300

• 0 < Q < 500 000

• 0 ≤ town1i, town2i < V , town1i ̸= town2i

• 0 < costi < 1 000

• There exists at least one path from any town to any other town.

Sample Input 1 Sample Output 1

12 12
0 2
0 3
2 3
3 4
3 5
6 7
6 8
6 10
7 8
7 10
8 9
8 10
6
0 1 7
0 10 5
1 2 4
5 6 1
5 11 9
9 11 2
7
1 11
5 8
4 1
4 10
9 11
2 4
3 8

16

Game Party
Problem ID: gameparty

It’s game night and you’re inviting all your friends over. To play the game you have to divide yourself and all your
friends into teams of three. You’re nervous that it won’t be possible to get everyone a full team, so you count everyone
at your door as they arrive in groups of different sizes. Find out how many will have to sit and watch because they
can’t form a full team.

Input
The first line consists of one integer G, the number of groups arriving. Next follows one line with G integers Si, each
denoting the size of the arriving group.

Output
Output the number of people that are not able to join a full team.

Limits
• 0 ≤ G ≤ 100 000

• 0 < Si ≤ 1 000

Sample Input 1 Sample Output 1

3
2 3 3

0

Sample Input 2 Sample Output 2

2
1 3

2

18

Healthy Headgear
Problem ID: healthyheadgear

You have decided to start your own face mask factory to produce face masks with custom prints. The orders are
in already even though you haven’t set up the factory for production yet. The machines needed for the production are
expensive and you want to buy as few as possible while still being able to fulfill all orders within the agreed delivery
deadline. Modern manufacturing technology has come a long way and the production machines can operate fully
automatic all day long without any human interaction or maintenance.

All orders ask for a certain number of face masks with the same unique print. The machines have a start-up time
for adjusting to a new print and make 10 at the same time. So the time it takes to produce 1 face mask is the same
as 10 (a machine can’t produce different prints at the same time). One can formulate the time in seconds it takes to
produce one order of n face masks as:

t(n) = 20 + 10 ∗
⌈
n

10

⌉
(1)

To be fair to your customers, you want to start production of the orders in the same order as you got them. Luckily, all
customers have agreed to the same delivery deadline in their contract.

You have also decided that the orders won’t be split up and ran on multiple machines, as you would have to
repackage the output from the machines. Right now, there is no machine that can do such a job, and it’s just too time
consuming to do it with humans.

What is the smallest number of machines that would make it possible to finish all orders in time?

Input
The first line consists of two integers T and N , the total time you have to produce all the face masks, and the number
of orders of face masks respectively. Next follows one line with N integers ni, each denoting the size of a batch.

Output
Output the smallest number of machines you have to invest in in order to complete all batches within the total time T .
If it is not possible to complete all orders within the deadline output “impossible”.

Limits
• 0 < T ≤ 1 000 000

• 0 ≤ N ≤ 1 000 000

• 0 < ni ≤ 10 000

Sample Input 1 Sample Output 1

100 3
1 1 1

1

Sample Input 2 Sample Output 2

60 3
3 13 11

3

20

Kattis Completionist
Problem ID: kattiscompletionist

Katryna has one goal in her life, and that is to solve all the problems published on Kattis. Of course, she can’t do
them all at once, as she still has to work on her computer science degree. Also, attempting to solve the most difficult
problems early on could hurt her motivation and persistence.

For that reason, she has concocted a plan. Every Kattis problem is assigned a difficulty score si. That score can
go up and down over time, depending on how difficult Kattis thinks the problem is. Katryna wants to solve so many
problems that her score increases by at least G every day, but she wants to solve the easiest problems first.

So Katryna will, at the start of every day, pick the unsolved problem with the lowest difficulty score and solve it
(if there are multiple with the lowest difficulty score, she will pick one of them at random). If her score has increased
by at least G today, she stops. But if not, she will again pick and solve the unsolved problem with the lowest difficulty
score, until either there are no more problems left to solve, or until her score has increased by at least G points today.
She repeats this every day until she has solved all the problems.

Assuming all the problems’ difficulty scores does not change, how many days would it take Katryna to solve every
Kattis problem?

Input
The first line consists of the integer N and the real number G, representing the total number of unsolved Kattis
problems, and the lowest score increase Katryna is happy with in a single day.

Then follows a single line with N real numbers, each separated by a space, denoting all the difficulty scores si of
the Kattis problems.

Output
Output the number of days Katryna will use to solve all her currently unsolved Kattis problems.

Limits
• 0 < N ≤ 100 000

• 1.0 ≤ G ≤ 99.9

• 1.3 ≤ si ≤ 9.6

• All real numbers will have exactly one digit after the decimal point.

Sample Input 1 Sample Output 1

5 3.0
1.3 1.7 1.7 1.7 3.1

3

Sample Input 2 Sample Output 2

3 2.1
2.0 2.0 2.0

2

Sample Input 3 Sample Output 3

3 3.6
1.3 2.3 2.3

2

22

Laser-Linked Lighthouses
Problem ID: laserlinkedlighthouses

Photo by Bruce Berrien

After centuries of trying, humankind has finally managed to establish N
colonies on Europa. Since they are so far away from the other humans in the
Solar System, a bunch of satellite repeaters propagate communications to and
from the other colonies.

However, critical nodes in the satellite repeater system and the backup so-
lution has had several hiccups, causing the Europa colonies to be without con-
nection to the outside world for several weeks. Although it now has been fixed,
the Europa council has decided that it’s necessary to have a failsafe, and want
to construct a bigger and more sensitive satellite dish. However, they can only
afford one big satellite dish, so it has to be put near one of the colonies.

That poses another problem: The colonies on Europa currently communicate
with each other via the satellite repeater system (yes, the ping is horrendous),
and when the system is down, they have to send vehicles instead. To relay the
information from the colony with the big satellite dish and in general, they have to set up a communications system
between all the colonies. The plan is to set up communication cables eventually, but in the meantime, they have
decided to set up a quick and dirty solution: laser lighthouses.

Laser lighthouses are simple things: they can be considered cylinders with an infinitesimally small radius and some
height h, standing perpendicular to the surface of a planet or moon. As long as the top of a lighthouse has a clear line
of sight to the top of another lighthouse, they can directly exchange information. On Europa, that means that the two
lighthouses must be high enough that the curvature of Europa’s surface doesn’t interfere with them:

Figure 1: A cut of Europa, where all 4 lighthouses lie exactly on the cut. The lighthouses in the upper right quadrant
are able to communicate because they have a line of sight, whereas the lighthouses in the bottom right quadrant do
not.

Fortunately, Europa can be considered a perfect sphere, and its gravity is so weak that spacetime is not warped
nearby.

The lighthouses can also communicate indirectly: If lighthouse i wants to send information to lighthouse j, it can
transmit that information via a sequence of lighthouses with a clear line of sight to each other.

The council has already decided where all the lighthouses’ should be placed, but are unsure how high they have
to be. To save costs, they want to prefabricate all lighthouses with the same size, and they want to use the minimum
height possible. Can you help them?

Input
The first line contains the integer N , the number of laser lighthouses. Then follows N lines, each with two integers
lati and loni, representing the coordinates of the ith lighthouse in degrees.

Output
Output the minimum height h the laser lighthouse needs to be, so that any lighthouse a can communicate with any
other lighthouse b directly or indirectly. Output the answer in multiples of Europa’s radius.

The output must have a relative or absolute error of at most 10−8.

Limits
• 2 < N < 1000

• −90 ≤ lati ≤ 90 and −180 < loni ≤ 180

• (lati, loni) ̸= (latj , lonj) for all i ̸= j

• If lati = ±90, then loni = 0

Sample Input 1 Sample Output 1

3
90 0
0 -90
0 0

0.41421356237309515

Sample Input 2 Sample Output 2

5
60 11
-33 18
38 -122
-38 145
40 116

0.45514138533258275

