
IDI Open
Programming Contest
March 30th, 2019

Problem Set

A Apostrophe Catastrophe

B Bit 4 Bit

C Coffee Date

D Delimiter Soup (Easy)

E Excavator Expedition

F Forest Evolution

G Game Suggestions

H Helpful Currents

I if then else

J Job Expenses (Easy)

Jury and Problem Writers

Jean Niklas L’orange (Head Judge)

Torbjørn Morland

Karl Johan Heimark

Ruben Spaans

2

Tips
� Tear the problem set apart and share the problems among you.

� Problems are not ordered by difficulty.

� Try solving the easy problems first. Two problems in this set are tagged with
“(Easy)” to help point you in the right direction.

� If your solution fails on a problem, you can print your program and debug it on
paper while you let someone else work on a different problem on the computer.

� If you need help, contact the judges.

� Look at the scoreboard if you are unsure which problem to work on next.

Rules
� Each team consists of one to three contestants.

� One computer is used per team.

� You may not cooperate with persons not on your team.

� You may print your programs on paper to debug them.

� What you may bring to the contest:

– Any written material (Books, manuals, handwritten notes, printed notes, etc).

– Pens, pencils, blank paper, stapler and other useful non-electronic office
equipment.

– NO material in electronic form (CDs, USB pen and so on).

– NO electronic devices (PDAs and so on).

� The only electronic content you may consult during the content is that specified by
the organiser (see the web-page). You may not copy source code from web pages,
etc.

� Your programs should read from standard in and write to standard out. Writing to
standard error will result in a failed submission. C programs should return 0 from
main().

� Your programs may not:

– access the network,

– read or write files on the system,

– talk to other processes,

– fork,

– or similar stuff.

– If you try, your program will hang or crash. If it hangs, it will take a couple
of minutes before others will be able to run their programs. So please make
an effort to not crack/break what we have spent our spare time preparing for
you.

� Show common sense and good sportsmanship.

3

4

Apostrophe Catastrophe
Problem ID: apostrophecatastrophe

Apostrophes and double quotes tend to get badly encoded by systems, causing them to print back things like
' or \". As a QA tester, Nova has seen lots of these issues. Today, she overheard that the Tweeper messaging
app may have an issue with these symbols as well, and may encode them in strange ways. This was interesting, so she
has written a Tweep to see if this is the case. Based on this Tweep, can you find out if Tweeper has an encoding issue,
and if so, what the symbols are encoded into?

Input
The input is two strings separated by a line. The first string I represents the input characters that was sent in, and the
second string O is how Tweeper presents the string. To avoid encoding troubles, apostrophes and double quotes have
been replaced with + and -, respectively.

Output
The output should have n lines of output, one for each possible encoding + and - may have. Each line must have two
strings a+i and a−i , representing what a + and a - can be encoded as, respectively.

If the string is empty, print instead <empty>, and if the string can be anything, print <any>. If there are multiple
answers, you can output them in any order.

If there is no valid answer, write corrupted instead.

Limits
• 1 ≤ |I|, |O| ≤ 280

• I and O contain only the lowercase letters a-z, 0-9, + and -

Sample Input 1 Sample Output 1

a+b-c
a-b+d-c

- +d-

Sample Input 2 Sample Output 2

knuth-morris-pratt
knuthmorrispratt

<any> <empty>

Sample Input 3 Sample Output 3

d+-trouble
doubletrouble

<empty> ouble
o uble
ou ble
oub le
oubl e
ouble <empty>

6

Bit 4 Bit
Problem ID: bit4bit

Photo by Bennett

The two robots ZF3 and XG2 are the hosts of the music show Bit 4 Bit. On
the show, they play all kinds of songs, from the famous Chips Ahoy Matey to
the lesser known ones, like The Funky Algorithm. Now, they only need some
playlists for the next season!

ZF3 and XG2 start out with a single playlist and want to create P more.
The first playlist p0 contains a single song that lasts m minutes. To make more
playlists, ZF3 and XG2 have two operations they can do:

1. Copy two existing playlists with the same number of songs and concate-
nate them.

2. Copy an existing playlist and replace one of the songs.

Since they usually don’t have the time to play an entire playlist, they decide
to pick a sublist instead of the entire thing. Now they wonder how long time it
would take to play it.

Input
The first line contains three integers P , Q and m: The number of playlists to create, the number of sublists they want
to check, and the length of the song in playlist p0.

Then follow P lines describing how the ith playlist was created:

• copy pi pj – Copy playlist pi, then copy pj into the list afterwards

• replace pi Li Ti – Copy playlist pi and replace song Li with a song that lasts Ti minutes

Finally, Q queries on Q lines follow. Each line contains three integers pi, Ai and Bi, which represent a query for
the total play time of the playlist pi from the song at index Ai, up to and including the song at index Bi.

Output
For each query, print out the time it will take to play all the songs in the sublist. Since the numbers may grow large,
output the result modulo 1 000 000 007.

Limits
• 1 ≤ P,Q ≤ 200

• 1 ≤ m ≤ 83

• For copy operations, |pi| = |pj |

• For replace operations, 1 ≤ Ti ≤ 83 and 0 ≤ Li < |pi|

• 0 ≤ Ai ≤ Bi < |pi|

• Playlist i will only copy playlists j where j < i

Sample Input 1 Sample Output 1

10 5 3
replace 0 0 5
copy 0 1
copy 1 0
copy 3 2
replace 4 2 4
replace 5 1 2
replace 4 3 7
copy 5 6
copy 7 5
copy 9 8
6 1 3
7 1 3
8 3 3
9 3 3
10 0 15

11
13
5
7
68

Coffee Date
Problem ID: coffeedate

Photo by Vidar Nordli-Mathisen

Erika and Leah have not had a cup of coffee together for too long,
and want to meet up today. Both of them like all the coffee shops in
the city, so they decide to meet up at the coffee shop where they can
see each other as soon as possible.

As they both live right by bus stops, they can take any of the
buses that go by their home. They can also switch to another bus at a
bus stop and can do so instantly, or wait until some other bus arrives.

The buses in the city are always on time, and all the routes have
a new bus starting at some interval Ci all day. By pure chance, all
the routes have a new bus starting right now.

As there is a coffee shop by every bus stop, Leah wants1 to know
the earliest time they can see each other.

Input
The first line contains four integers B, N , Be, Bl: The number of bus stops, the number of bus routes, the bus stop by
Erika’s apartment, and the bus stop by Leah’s apartment. Then follow 3N lines, three lines in a row for each bus stop.

Each bus route starts with a line with the integers Ci and Si: The interval before a new bus starts, and the number
of bus stops this route stops at, respectively. Then follows a line with Si integers si,j , the number of each bus stop in
order: si,0 is the start stop, si,1 is the next stop, and so on. After that comes a line with Si − 1 integers ti,j , the time it
takes to go from bus stop si,j to stop si,j+1.

Output
Output the earliest time Erika and Leah will see each other, assuming they both wait at the bus station right now. If
there is no way they can meet, output ‘NO COFFEE FOR YOU’.

Limits
• 0 ≤ Be, Bl, si,j < B ≤ 1 000

• 0 ≤ N ≤ 100

• 1 ≤ Ci, tij < 1 000

• 2 ≤ Si ≤ B

• A bus only arrives at a bus stop once

Sample Input 1 Sample Output 1

9 4 0 7
1 4
3 7 6 5
9 7 2
2 4
8 5 4 3
4 2 2
7 4
0 1 6 3
7 8 6
2 3
1 2 3
2 2

14

10

Delimiter Soup
Problem ID: delimitersoup

Photo by Judit Klein

Whenever a programmer starts to learn a Lisp, they think that there are too
many parentheses in it. Sophia thinks there are too few, so she is making a
programming language with only parentheses. To spice it up a bit, she is also
adding square brackets (‘[]’) and curly braces (‘{}’) to the language.

Right now, she is struggling to make people use it for production code. Ob-
viously, it has to be because of the bad error messages you get when you mess up
the delimiters! Right now, you only get the error message ‘syntax error’
when you mess them up.

Any opening delimiter must be closed by the same type of delimiter: ‘(’ is
closed with ‘)’, ‘[’ is closed by ‘]’, etc.

Sophia wants to improve the error message so that you at least get some help finding out where it all went wrong.

Input
The input consists of two lines. The first line contains an integer |L|, the length of the next line. The next line contains
L, the program you want to validate.

Output
Output the character and the 0-indexed location of the first closing delimiter that does not match with the opening
delimiter.

If there are no errors, or there are more opening delimiters than closing delimiters, print ‘ok so far’ instead.

Limits
• 1 ≤ |L| ≤ 200

• L contains only the characters ‘()[]{}’ and spaces

• L does not start with a space character

Sample Input 1 Sample Output 1

8
([] []]

] 7

Sample Input 2 Sample Output 2

13
(([] [[]] ())

ok so far

Sample Input 3 Sample Output 3

21
[{ { () () () () }]

] 20

Sample Input 4 Sample Output 4

27
[{ [[()]] (({})) }] () {}

ok so far

Sample Input 5 Sample Output 5

19
[[]] ()) [] {{}} {

) 8

12

Excavator Expedition
Problem ID: excavatorexpedition

Photo by Markus Spiske

Little Nanouk is obsessed with excavators. In fact, he is so ob-
sessed with them that he will throw a tantrum if he doesn’t see too
many during a road trip.

This poses a problem for his mother Amka, who wants to bring
him to his grandparents today. To make the drive to his grandparents
as smooth as possible, she has plotted out all the construction sites
they could see on their way, along with the “boring” sites (according
to Nanouk). Of course, Amka also wants to make some progress for
each place they drive to. For that reason, the map she has plotted out
is a directed acyclic graph.

Could you help Amka find the route to their grandparents which
makes Nanouk as happy as possible?

Input
First, a single line with two integers V and E is given. Then, a single line with V characters is given, where Vi is ‘X’
if location i is a construction site, and ‘.’ if it is a boring site.

Then follow E lines. Every line contains two integers Fi and Ti, representing that it is possible to drive from Fi to
Ti.

The location 0 and V − 1 are Amka’s home and Nanouk’s grandparents’ home, respectively.

Output
Output the happiness of Nanouk if Amka drives the route which maximises Nanouk’s happiness. Nanouk’s happiness
is defined as the number of construction sites visited, minus the number of boring sites (except for Amka’s and
Nanouk’s grandparents’ house).

Limits
• 1 < V ≤ 400 000

• 0 < E ≤ 400 000

• 0 ≤ Fi, Ti < V

• For all 0 < i < V , Vi ∈ {‘.’, ‘X’}

• For i ∈ {0, V − 1}, Vi = ‘.’

• There is always a path from Amka’s house to Nanouk’s grandparents.

• There are no cycles in the graph.

Sample Input 1 Sample Output 1

13 15
.X...X.X...X.
0 1
0 2
1 3
2 4
3 5
4 5
5 6
5 7
5 8
6 12
7 9
8 10
9 11
10 11
11 12

2

Forest Evolution
Problem ID: forestevolution

Photo by Patrick Hendry

Ewan is a park ranger, and part of his duty is to observe how the ecosystem
changes over time. He has just detected that a group of pine trees and aspens
have started to share the same space. Before, there was a clear line between the
species.

This isn’t unusual, but Ewan is a bit curious about how this will evolve in the
future. To track it, he wants to know how much of the area is covered by both
species right now.

Input
The input begins with a single line with two integers P and A: the number of
pine trees and aspens, respectively. Then follow P + A lines, one line for each tree. The first P of these lines contain
locations for the pine trees, and the remaining A lines contain locations for the aspens.

Each tree is represented by two real numbers xi and yi, representing the location of the tree on a 2D map in metres.

Output
Output the area covered by both species in square metres. Your answer must have an absolute or relative error of at
most 10−3.

A point is covered by a species if it is at the edge of or inside a triangle made by three distinct trees of that species.

Limits
• 0 ≤ P,A ≤ 1 000

• 0.0 ≤ xi, yi ≤ 1 000.0

• 0.2 < |xi − xj |+ |yi − yj | for all 0 ≤ i < j < P +A

• Real numbers in the input will have at most 8 digits after the decimal point

Sample Input 1 Sample Output 1

3 3
0.0 6.0
6.0 0.0
6.0 6.0
4.0 4.0
10.0 4.0
4.0 10.0

4.0

Sample Input 2 Sample Output 2

6 4
0.67 10.82
5.58 5.43
5.83 10.79
5.70 15.06
10.53 10.05
10.45 5.22
6.76 8.64
8.93 8.45
6.43 5.34
12.34 2.87

10.47478482125473

16

Game Suggestions
Problem ID: gamesuggestions

Photo by Carl Raw

Khadija is working on her new game, which will be a. . . well, she doesn’t
really know yet! She has made an extremely flexible game engine, and being a
skilled developer, she can implement just about anything in it.

To find out what the game should contain, she has asked her friends for input.
They have a lot of suggestions. So many, in fact, that to not overwhelm her with
ideas, they have promised to only present at most one suggestion each.

However, they all want to give Khadija as many different suggestions as
possible, so they have gathered and found a set of suggestions such that:

• They maximise the total number of suggestions they tell to Khadija

• Every person suggests at most one of their own suggestions

When Khadija has received all the suggestions, she assigns them to one or more categories.
To get some variation into the game, she limits the number of suggestions from one category. She then picks as

many suggestions as possible, given the category limits (A suggestion only counts towards one category).
While she’s busy implementing all these suggestions, her friends wonder how many suggestions she could’ve

ended up implementing in theory.

Input
The input begins with a single line with three integers F , S and C: The number of friends, distinct suggestions and
distinct categories, respectively.

Next follow F lines, one line for each friend: The line contains Fni space separated suggestion names.
Then, C lines follow, one for each category. The line starts with an integer Cni, the maximum number of sugges-

tions Khadija wants to include that are assigned to this category, followed by Sni space separated suggestion names
which are part of this category.

Output
Output the maximum number of suggestions Khadija could possibly end up implementing.

Limits
• 0 < F, S,C, Fni ≤ 200

• 0 < Cni ≤ Sni ≤ 100

• All suggestion names are unique, and consist of between 1 and 20 characters in the range a-z and 0-9.

Sample Input 1 Sample Output 1

7 9 4
ducks 2d
guns 3d swords
3d swords
3d swords wolves
swords 2d
zombies 2d vampires demons
2d swords
1 2d 3d
1 swords guns
1 wolves ducks
4 wolves zombies vampires demons

5

18

Helpful Currents
Problem ID: helpfulcurrents

Photo by Payton Ferris

Lysias loves his full-rigged ship and takes it out to his island castle
as often as possible. On his way back to the castle one day, the engines
capable of turning the sails failed. As it is a full-rigged ship, he and his
crew are now unable to turn the sails in any direction.

But, as luck would have it, there is a south wind which is blowing them
in the right direction. . . at least approximately. Since they may not get to
the castle by wind only, Lysias believes he can use the ocean’s currents to
move the ship either east or west temporarily by retracting and lowering
the ship’s sails. In that way, the ship can move in two potential directions:

• Move north by lowering the sails

• Retract the sails and move in the direction of the current they’re on
top of (east/west)

Lysias has dug up an old map of all the currents in this part of the ocean. As he is fond of mathematics, not only
does Lysias wonder if it’s possible to get home without fixing the sails; he also wonders how many different routes
they can take to get home. Can you help him?

Input
The first line has three integers: Y and X and xinit, representing the number of rows and columns of the map, and
which column the ship is currently placed at. The ship always starts on the bottom row.

Then follow Y rows, each with X characters each. All characters Cx,y is one of ‘~’, ‘#’, ‘@’, ‘>’ and ‘<’. ’~’
represents open sea without any currents, ‘#’ is impassable shallow waters, and ‘>’ and ‘<’ are currents moving the
boat to the right and left respectively. ‘@’ represents Lysias’ castle.

Output
Output all the different distinct paths the ship could take to get back to the castle. Since there may be very many
different ways to get back, output the answer modulo 1 000 003.

If there are no ways to get to the castle, output “begin repairs”.

Limits
• 0 < Y ≤ 300

• 0 ≤ xinit < X ≤ 50 000

• If Cx,y = ‘>’, then x+ 1 < X and Cx+1,y /∈ {‘<’,‘#’}

• If Cx,y = ‘<’, then 0 ≤ x− 1 and Cx−1,y /∈ {‘>’,‘#’}

• There is exactly one ‘@’ tile on the map

• The boat will not start on a ‘#’ tile

Sample Input 1 Sample Output 1

2 2 0
>@
>~

2

Sample Input 2 Sample Output 2

3 5 1
>>@<<
>~#~<
>>>>~

4

Sample Input 3 Sample Output 3

3 4 0
>~@~
~<#~
>>>~

begin repairs

if-then-else
Problem ID: ifthenelse

Saladin loves to make computers and languages. This time, he has made a CPU that works on 12-bit words, and
created his own language called Salang on top of it. The language itself works well, except for one weird bug. To
fix the problem, he has designed a decompiler: A program that takes the machine code and creates an intermediate
representation of the program.

The intermediate representation is in a small language that can only do assignments, integer addition and multi-
plication, if statements and printing. The integer operations silently overflow and wrap around, and the representation
has no scoping (a variable @var has the same memory address everywhere). It uses the following EBNF syntax:

<letter> := ’a’ | ’b’ ... ’y’ | ’z’
<var> := ’@’ letter { letter }
<uint> := ? base 10 of an unsigned int lower than 2^12 ?
<val> := <var> | <uint>
<op> := ’+’ | ’*’
<cmp> := ’==’ | ’<=’ | ’<’
<assign> := <var> ’=’ <val> [<op> <val>] ’\n’
<if> := ’if’ <val> <cmp> <val> ’then’ ’\n’ { <statement> }

[’else’ ’\n’ { <statement> }]
’endif’ ’\n’

<print> := ’print’ <val>
<statement> := <assign> | <if> | <print>
<program> := { <statement> }

where all values are separated by exactly one space, unless if they begin on a new line.
But the decompiler has forgotten to output the first line! Although all variables are initialised to 0 before the

program starts, the program always begins by assigning the magic variable @a to a fixed number. Before Saladin can
start with the debugging, he needs to know the initial value of @a.

Input
The input begins with a single line with two integers: I and O. Then comes I lines, the program itself. Finally comes
O lines, the numbers this program printed when it ran.

Output
Output the value @a has at the start of the program. If there are multiple valid answers, output the lowest one. If there
are no valid answers, output “no solution”.

Limits
• 0 ≤ O < I ≤ 100

• The program matches the EBNF above

• The length of a line will always be less than 80 characters

Sample Input 1 Sample Output 1

12 2
@b = @a + @a
@c = @a * @a
if @c <= @b then
@dx = @b + 3996
if @dx < @a then
print @c
else
endif
endif
@a = @b * @dx
@a = @a + @c
print @a
129
4029

65

Job Expenses
Problem ID: jobexpenses

At ACME Corp, the seller Robin is selling software like hotcakes. To sell the software, he arranges meetings all
over the country. Of course, he always needs to travel there, and sometimes even stay the night. Other times, he
decides that a hot dog on the way to a meeting counts as accommodation.

Because Robin is very busy, he hasn’t been able to file his job expenses this month. Eret, the accountant, told
him that he could fix it for him, as long as he got the price of all the expenses along with the receipts. Robin did this
but misheard him: He has provided a list of all expenses and incomes he has brought in last month, with incomes as
positive integers and expenses as negative integers.

Can you help Eret find out how much expenses Robin has paid for the last month?

Input
The input consist of two lines: One line with the integer N , and one line with N integers ki, representing the numbers
Robin has written down.

Output
Output the sum of all the expenses Robin has paid for the last month.

Limits
• 0 ≤ N ≤ 20 000

• −50 000 ≤ ki ≤ 500 000 and ki ̸= 0

Sample Input 1 Sample Output 1

3
1 -2 3

2

Sample Input 2 Sample Output 2

5
129 44 394 253 147

0

Sample Input 3 Sample Output 3

10
-100 40000 -6500 -230 -18 34500 -450 13000 -100 5000

7398

